Electronic Supplementary Information

Deep eutectic solvents choline chloride $2CrCl_3 \cdot 6H_2O$: an efficient catalyst for esterification of formic and acetic acid at room temperature

Jin Cao, Bin Qi, Yuhan Shang, Huiwen Liu, Wenjing Wang, Jia Lv, Zhiyan Chen, Haibo Zhang* and Xiaohai Zhou

Table of Contents

1. Experimental section1
2. The calculation of the yield n-butyl acetate by GC4
3. Representative examples of GC chromatograms from reaction mixtures4
4. Characterization data and spectra for n-butyl acetate5
5. The effect of temperature on the esterification reaction with [ChCl] [FeCl ₃] ₂ 6
6.The GC-MS spectra of esters (Table 4)6

1.Experimental section

Materials. All reagents and solvents for syntheses were purchased from commercial sources and used without further purification.

Measurements.The analysis of the reaction mixture was carried out on a gas chromatograph (sp-6890) equipped with a flame ionization detector (FID) and a capillary column (HP-5, 30 m×0.25 mm×0.25 mm). The column temperature was 80 °C. The temperatures of the injector and detector were maintained at 320 °C and 320 °C, respectively. The products were further identified by GC (varian 3900)–MS (varian saturn 2100 T) quipped with a flame ionization detector (FID) and a capillary column (DB-5, 30 m×0.25 mm×0.25 mm). The ¹H and ¹³C NMR spectra were recorded on a Bruker 400MHz NMR spectrometer at 298K. The chemical shifts (δ) were given in part per million relative to internal tetramethylsilane (TMS, 0 ppm for ¹H), CDCl₃ (77.3 ppm for ¹³C).

Preparation of deep eutectic solvent [ChCl][CrCl₃·6H₂O]₂. A mixture of the chromium(iii) chloride hexahydrate (CrCl₃·6H₂O) and choline chloride in a molar ratio of 2:1 was heated to 70°C with gentle stirring until a green liquid formed.

Preparation of deep eutectic solvent [ChCl][FeCl₃]₂. A mixture of the ferric chloride (FeCl₃) and choline chloride in a molar ratio of 2:1 was heated to 100°C with gentle stirring until a dark brown liquid formed.

Preparation of deep eutectic solvent [ChCl][AlCl₃·6H₂O]₂. A mixture of the aluminum chloride hexahydrate (AlCl₃·6H₂O) and choline chloride in a molar ratio of 2:1 was heated to 70°C with gentle stirring until a colorless liquid formed.

Preparation of deep eutectic solvent [ChCl][MgCl₂·6H₂O]₂. A mixture of the magnesium chloride hexahydrate (MgCl₂·6H₂O) and choline chloride in a molar ratio of 2:1 was heated to 70°C with gentle stirring until a green clear liquid formed.

Preparation of deep eutectic solvent [ChCl][MnCl₂·4H₂O]₂. A mixture of the manganese(II) chloride tetrahydrate (MnCl₂·4H₂O) and choline chloride in a molar ratio of 2:1 was heated to 70°C with gentle stirring until a pink liquid formed.

Preparation of deep eutectic solvent [ChCl][CoCl₂·6H₂O]₂. A mixture of the cobalt(II) chloride hexahydrate (CoCl₂·6H₂O) and choline chloride in a molar ratio of 2:1 was heated to 70°C with gentle stirring until a blue liquid formed.

Preparation of deep eutectic solvent [ChCl][NiCl₂·6H₂O]₂. A mixture of the nickel chloride hexahydrate (NiCl₂·6H₂O) and choline chloride in a molar ratio of 2:1 was heated to 70°C with gentle stirring until a green liquid formed.

Preparation of deep eutectic solvent [ChCl][CuCl₂·2H₂O]₂. A mixture of the cupric chloride (CuCl₂·2H₂O) and choline chloride in a molar ratio of 2:1 was heated to 70°C with gentle stirring until a brown liquid formed.

Preparation of deep eutectic solvent [ChCl][ZnCl₂]₂. A mixture of the Zinc chloride (ZnCl₂) and choline chloride in a molar ratio of 2:1 was heated to 100°C with gentle stirring until a colorless liquid formed.

Preparation of deep eutectic solvent [ChCl][SnCl₂]₂. A mixture of the anhydrous stannous chloride (SnCl₂) and choline chloride in a molar ratio of 2:1 was heated to 100°C with gentle stirring until a colorless liquid formed.

The synthesis process of n-butyl acetate. Carboxylic acids (0.10 mol 6.00g) and nbutanol (0.02 mol 1.48g) without solvent were added, and then the deep eutectic solvent [ChCl][CrCl₃·6H₂O]₂ (0.5mmol 0.3365g) was added to initiate the reaction. The reaction mixture was stirred at 25°C for 24h. After the reaction was completed, two clearly separated phases are formed, the upper liquid layer was spilled off with a Pasteur pipette, the lower layer formed by DES, water and excess starting material was extracted with diethyl ether three times. The combined organic layers were washed with saturated aqueous NaHCO₃ three times and dried over anhydrous Mg₂SO₄, filtered, and then the solvent was removed by rotary evaporation to obtain nbutyl acetate 1.99g (isolated yield=85.7%). **Recycle process of DES.** After the reaction was completed, two clearly separated phases are formed, the upper liquid layer was spilled off with a Pasteur pipette, the lower layer formed by DES, water and excess starting material was extracted with diethyl ether three times. A drying in vacuo at 60°C overnight was carried out on DES for further cycles.

2. The calculation of the yield n-butyl acetate by GC

The yield of esters and the selectivity to esters was calculated using equations (1-2), via GC with 1,4-dimethyl-benzene as internal standard, in which the number of moles was determined by Internal Standard Method from the chromatographic analysis (BA-n-butyl acetate, PX-1,4-dimethyl-benzene) (n-butyl acetate's standard curve: y=1.9754x-0.0500 with R²=0.9997, where $y=m_{BA}/m_{PX}$ and $x=A_{BA}/A_{PX}$ with A being the integral area of GC).

$$m_{BA} = m_{PX} \times (1.9754 \times A_{BA} / A_{PX} - 0.0500)$$
(1)

$$Yield_{BA} = (m_{BA}/116)/(m_{butanol}/74) \times 100\%$$
 (2)

After the reaction was completed, liquid samples were analyzed on a gas chromatograph after addition of the internal standard. The yield of n-butyl acetate was calculated using equations (1-2).

3. Representative examples of GC chromatograms from reaction mixtures

Fig S1 Representative examples of GC chromatograms from reaction mixtures

4. Characterization data and spectra for n-butyl acetate

δ_H (400 MHz, CDCl₃) 4.01, 1.99, 1.56, 1.34, 0.89. δ_C (101 MHz, CDCl₃) 171.33, 64.37, 30.57, 20.87, 19.05, 13.60.

Fig S2 ¹H NMR spectrum of n-butyl acetate (CDCl₃; 400MHz).

Fig S3 ¹³C NMR spectrum of n-butyl acetate (CDCl₃; 100MHz).

5. The effect of temperature on the esterification reaction with [ChCl] $[FeCl_3]_2$

Entry	Temperature	Yield of n-butyl acetate ^b
1	25°C	64.5%
2	30°C	66.9%
3	40°C	71.3%
4	50°C	78.4%
5	60°C	79.9%
6	70°C	79.5%
7	80°C	78.5%

Table S1 The effect of temperature on the esterification reaction with [ChCl] [FeCl₃]₂ ^a

a Reaction conditions: n-butanol (0.01 mol), acetic acid (0.05 mol), and DES (0.25 mmol) for 24h b Yield are based on GC. 1,4-dimethyl-benzene as internal standard

6.The GC-MS spectra of esters (Table 4)

(1) The GC-MS spectra of ethyl acetate

□2□The GC-MS spectra of n-propyl acetate

□3□The GC-MS spectra of isopropyl acetate

□4□The GC-MS spectra of n-butyl acetate

(5) The GC-MS spectra of isoamyl acetate

(6) The GC-MS spectra of n-hexyl acetate

(7) The GC-MS spectra of n-octyl acetate

(8) The GC-MS spectra of iso-octyl acetate

(10) The GC-MS spectra of phenyl acetate

(11) The GC-MS spectra of butyl formate

(12) The GC-MS spectra of butyl propionate

(14) The GC-MS spectra of 2-chloroethyl acetate

Scan 485 from d:\data\2015\12\1229\1229-0001.xms Entry 2563 from REPLIB NIST Library

(15) The GC-MS spectra of propargyl acetate

Scan 291 from d:\data\2015\12\1229\1229-0002.xms Entry 5284 from MAINLIB NIST Library

(16) The GC-MS spectra of isoamyl formate

Scan 401 from d:\data\2015\12\1229\1229-0003.xms Entry 4525 from REPLIB NIST Library

Scan 635 from d:\data\2015\12\1229\1229-0004.xms Entry 20169 from MAINLIB NIST Library

(18) The GC-MS spectra of n-octyl formate

Scan 894 from d:\data\2015\12\1229\1229-0006.xms Entry 47914 from Wiley NIST Library

(19) The GC-MS spectra of benzyl formate

Scan 846 from d:\data\2015\12\1229\1229-0007.xms

