Supporting Information

Diphenylamino-substituted quinacridone derivative: red fluorescence based on intramolecular charge-transfer transition

Chenguang Wang, Shipan Wang, Weiping Chen, Zuolun Zhang,* Hongyu Zhang and Yue Wang

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Contents

Photophysical properties S2-S4
TGA and DSC curves S5-S6
Electroluminescent properties S6-S8
NMR spectra S8-S9
References S9
Fig. S1 Absorption (solid line) and fluorescence (dashed line) spectra of NPh$_2$-QA in various solvents.

Table S1 Photophysical data of NPh$_2$-QA in various solvents.

<table>
<thead>
<tr>
<th>Solvents</th>
<th>Δf^a</th>
<th>λ_{abs}/ nm</th>
<th>ε / 104 M$^{-1}$ cm$^{-1}$</th>
<th>λ_{em}/ nm</th>
<th>Stokes shift / cm$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>0.0131</td>
<td>566</td>
<td>0.83</td>
<td>602</td>
<td>1057</td>
</tr>
<tr>
<td>CHCl$_3$</td>
<td>0.1482</td>
<td>579</td>
<td>0.73</td>
<td>649</td>
<td>1863</td>
</tr>
<tr>
<td>CH$_2$Cl$_2$</td>
<td>0.2171</td>
<td>570</td>
<td>0.71</td>
<td>644</td>
<td>2016</td>
</tr>
<tr>
<td>DMSO</td>
<td>0.2630</td>
<td>575</td>
<td>0.73</td>
<td>677</td>
<td>2620</td>
</tr>
<tr>
<td>CH$_3$CN</td>
<td>0.3046</td>
<td>564</td>
<td>0.73</td>
<td>674</td>
<td>2894</td>
</tr>
</tbody>
</table>

a orientation polarizability of the solvent.
Lippert-Mataga plots. Lippert-Mataga equation\(^1\) expresses the Stokes shift $\Delta \nu$ as a function of the solvent orientation polarizability Δf:

$$\Delta \nu = \frac{1}{4\pi \varepsilon_0} \frac{2(\mu_e - \mu_g)^2}{hc a^3} \Delta f + \text{constant}$$

$$= \frac{(9.05 \times 10^{34})(\mu_e - \mu_g)^2}{a^3} \Delta f \ [C^{-2}] + \text{constant}$$

where ε_0 represents dielectric constant of vacuum, h represents Planck constant, c represents light velocity, a represents radius of Onsager cavity, μ_g and μ_e represent the dipole moment in ground and excited states, respectively. C is the unit of quantity of electric charge. For NPh$_2$-QA, DFT-calculation at B3LYP/6-31G* level gives a value of 6.65 Å. Based on the Lippert-Mataga equation, the difference of dipole moment between ground and excited states ($\mu_e - \mu_g$) is 13.4 D.

Table S2 Fluorescence quantum yields of C$_8$-QA and NPh$_2$-QA in various solvents.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Toluene</th>
<th>CHCl$_3$</th>
<th>CH$_2$Cl$_2$</th>
<th>DMSO</th>
<th>CH$_3$CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>C$_8$-QA</td>
<td>0.96</td>
<td>0.97</td>
<td>0.96</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>NPh$_2$-QA</td>
<td>0.56</td>
<td>0.13</td>
<td>0.09</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Fig. S2 Lippert–Mataga plot of NPh$_2$-QA.
Fig. S3 Fluorescence spectra of solid thin films of C$_8$-QA (yellow line) and NPh$_2$-QA (deep red line).

Fig. S4 Fluorescence microscopy image of the crystalline powder of NPh$_2$-QA.
Fig. S5 TGA curves of C₈-QA and NPh₂-QA.

Fig. S6 Two heating (solid line)-cooling (dashed line) cycles of the DSC measurements of NPh₂-QA.
Fig. S7 Two heating (solid line)-cooling (dashed line) cycles of the DSC measurements of C₈-QA.

Fig. S8 EL spectra of the OLED device at different driving voltages.
Fig. S9 Current density–Voltage–Brightness characteristics of the OLED device.

Fig. S10 Current efficiency and power efficiency versus brightness characteristics of the OLED device.
Fig. S11 External quantum efficiency *versus* brightness characteristics of the OLED device.

Fig. S12 1H NMR spectrum of NPh$_2$-QA (400 MHz, CD$_2$Cl$_2$).
Fig. S13 13C{1H} NMR spectrum of NPh$_2$-QA (100 MHz, CD$_2$Cl$_2$).

References