Dye-sensitized solar cell based on inclusion complex of cyclic porphyrin dimer bearing four 4-pyridyl groups and fullerene C_{60}

Yousuke Ooyama,*a Koji Uenaka,a Takuya Kamimura,b Shuwa Ozako,b Masahiro Kanda,a Taro Koide,b and Fumito Tani*b

a Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan.
Fax: (+81) 824 24 5494; Tel: +81 824 24 7689; E-mail: yooyama@hiroshima-u.ac.jp

b Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
Fax: (+81)-92-802-6224; E-mail: tanif@ms.ifoc.kyushu-u.ac.jp
Fig. S1 (a) 1H NMR and (b) 13C NMR of $\textbf{1}$ in CDCl$_3$.
Fig. S2 H-H COSY of 1 in CDCl₃.
Fig. S3 (a) 1H NMR and (b) 13C NMR of 2 in pyridine-d_5.
Fig. S4 H-H COSY of 2 in pyridine-d_5.
Fig. S5 (a) 1H NMR and (b) 13C NMR of H$_4$-C$_4$-CPDPy(TEO) in CDCl$_3$.
Fig. S6 H-H COSY of $\text{H}_4\text{-C}_4\text{-CPD}_{\text{Py}}(\text{TEO})$ in CDCl$_3$.
Fig. S7 (a) Cyclic voltammograms (CV) and (b) differential pulse voltammograms (DPV) of H₄-C₄-CPD₉(TEO) in deaerated PhCN with 0.1 M Bu₄NPF₆ at room temperature. [H₄-C₄-CPD₉(TEO)] = 0.4 mM.

Fig. S8 (a) Cyclic voltammograms (CV) and (b) differential pulse voltammograms (DPV) of C₆₀⊂H₄-C₄-CPD₉(TEO) in deaerated PhCN with 0.1 M Bu₄NPF₆ at room temperature. [C₆₀⊂H₄-C₄-CPD₉(TEO)] = 0.4 mM.
Fig. S9 (a) Cyclic voltammograms (CV) and (b) differential pulse voltammograms (DPV) of H_4-Ptz-CPD$_{py}$(TEO) in deaerated PhCN with 0.1 M Bu$_4$NPF$_6$ at room temperature. $[\text{H}_4$-Ptz-CPD$_{py}$(TEO)] = 0.4 mM. The oxidation wave at 0.27 V corresponds to phenothiazine unit.

Fig. S10 (a) Cyclic voltammograms (CV) and (b) differential pulse voltammograms (DPV) of C_60-H_4-Ptz-CPD$_{py}$(TEO) in deaerated PhCN with 0.1 M Bu$_4$NPF$_6$ at room temperature. $[\text{C}_60$-H_4-Ptz-CPD$_{py}$(TEO)] = 0.4 mM. The oxidation wave at 0.3 V corresponds to phenothiazine unit.