Supporting Information

Carbon quantum dots decorated hollow In$_2$S$_3$ microspheres with efficient visible-light-driven photocatalytic activities

Changyou Huanga, Yuanzhi Hongb, Xu Yanc, Lisong Xiaoa, Kai Huanga, Wei Gua, Kuili Liud, Weidong Shia,*

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China

bSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China

cSchool of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China

dDepartment of Physics and Electronic Engineering, Zhoukou Normal University, Zhoukou, 466001, P. R. China

*Corresponding author: Tel.: +86 511 8879 0187 Fax: +86 511 8879 1108

E-mail address: swd1978@ujs.edu.cn (W. Shi)
Contents list

Fig. S1 EDX images of the pure In$_2$S$_3$ sample (a) and 3wt% CQDs/In$_2$S$_3$ sample (b).

Fig. S2 XPS spectrum of In$_2$S$_3$ sample: C 1s.

Fig. S3 the adsorption-desorption equilibrium between photocatalysts and MO molecules under dark.

Fig. S4. The photocatalytic activities of pure In$_2$S$_3$ (a) and 3wt% CQDs/In$_2$S$_3$ (b) samples for MO degradation under infrared light.

Fig. S1 EDX images of the pure In$_2$S$_3$ sample (a) and 3wt% CQDs/In$_2$S$_3$ sample (b).
Fig. S2 XPS spectra of In$_2$S$_3$ sample: C 1s.

Fig. S3 the adsorption-desorption equilibrium between photocatalysts and MO molecules under dark.
Fig. S4. The photocatalytic activities of pure In$_2$S$_3$ (a) and 3wt% CQDs/In$_2$S$_3$ (b) samples for MO degradation under infrared light.