Systematical investigation of in vitro molecular interaction between fluorescent carbon dots and human serum albumin

Shan Huanga,b, Hangna Qiua, Jiangning Xiea, Chusheng Huanga, Wei Sua, Baoqing Hub and Qi Xiaoa,b,*

a College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, P. R. China

b Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University), Ministry of Education, P. R. China

* Corresponding author. Tel.: +86 771 3908065; Fax: +86 771 3908065; E-mail address: qi.xiao@whu.edu.cn
Fig. S1. The relative quantum yield of CDs.
Fig. S2. Fluorescence decay traces of CDs.

<table>
<thead>
<tr>
<th>τ_1 (ns)</th>
<th>τ_2 (ns)</th>
<th>$<\tau>$ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.01 (44.31%)</td>
<td>4.85 (55.69%)</td>
<td>3.15</td>
</tr>
</tbody>
</table>
Fig. S3. Influence of pH value on the fluorescence property of CDs.
Fig. S4. MALDI-TOF-MS of CDs.
Fig. S5. Influences of CDs with different concentrations on the steady-state fluorescence intensity of HSA at 298 K, 304 K and 310 K.
Fig. S6. Fluorescence decay curves of CDs and HSA-CDs system.
Fig. S7. Influences of CDs with different concentrations on the steady-state fluorescence intensity of HSA at three different pH values (pH 4.0, 5.0 and 7.0).
Fig. S8. Influences of CDs with different concentrations on the steady-state fluorescence intensity of HSA in the absence and presence of 0.2 M NaCl.
Fig. S9. Plots of $\log(F_0 - F)/F$ versus $\log[\text{CDs}]$ for HSA-CDs system at three different temperatures.