Luminescent sensing from a new Zn(II) metal-organic framework

Jian-Qiang Liua*, Jian Wub, Fu-Mei Lia, Wei-Cong Liua, Bao-Hong Lia, Jun Wangc, Qin-Ling Lia, Reena Yadavd and Abhinav Kumard*

aSchool of Pharmacy, Guangdong Medical University, Dongguan, 523808, P. R. China and Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, P. R. China

bGuangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, College of Chemistry and Chemical Engineering, Nanning, Guangxi 530006, China

cSchool of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000, PR China

dDepartment of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007, India

Corresponding Authors: jianqiangliu2010@126.com, Tel/Fax: 86-769-22896560

Measurements:

UV–Vis absorption spectroscopy was obtained on U-3010 spectrophotometer (Hitachi, Japan). Fluorescence spectra were performed with Eclipse fluorescence spectrophotometer (Varian, USA), the photomultiplier tube (PMT) voltage was 700 V, the scan speed was 1200 nm min-1, the slit width of excitation and emission is 5 nm

Photoluminescence Measurements. The photoluminescence of GDMU-3 was investigated in the solid state at room temperature. For the experiments of sensing metal ions, GDMU-3 powder (5 mg) was immersed in DMF solutions containing 10-2 M of M(NO\textsubscript{3})\textsubscript{x}. Before photoluminescence measurements, the suspensions were oscillated for 30 min using ultrasonic waves to ensure uniform dispersion. For the titration experiments of Fe3+ ion, GDMU-3 powder (5 mg) was immersed in DMF with the dropped addition of different concentrations of Fe3+ in DMF.

Dye adsorption: Freshly prepared compound GDMU-3 (10 mg) were transferred to DMF solutions (8 mL) of Methylene and Solvent Yellow 2 in 10 mL sealed glass bottles. UV/Vis spectra were used to determine the selective adsorption ability of GDMU-3 after certain time intervals.

Dye release: Compound GDMU-3 loaded with Methylene and Solvent Yellow 2 (10 mg) were transferred to pure DMF and saturated NaCl in DMF solution (4 mL) in 10 mL sealed glass bottles. UV/ Vis spectra were used to determine the selective release
of GDMU-3 after certain time intervals.

Fig. S1 X-ray single crystal structure of GDMU-3 exhibiting two types of pores of about (a) 5.8 × 3.8 Å along the b axis and (b) 10.2 × 20.5 Å along the c axis, respectively.

Fig. S2 13C NMR spectra of title compound.
Fig. S3. TGA curves of compound **GDMU-3**.

Fig. S4. PL curves of compound **GDMU-3** and L ligand at room temperature in the solid state (the inserts show excitation spectrum $\lambda_{ex} = 300$ nm for L(left) and $\lambda_{ex} = 320$ nm for GDMU-3(right)).

Fig. S5 UV-Vis-NIR spectra for title compound
Fig. S6 XRPD patterns for GDMU-3.

Fig. S7 The EDS of the solid samples of GDMU-3-Fe$^{3+}$ obtained by centrifugal separation of GDMU-3 soaked in DMF solution containing Fe(NO$_3$)$_2$ with 10$^{-2}$ M, washing with DMF, and drying in 60 °C oven.

Fig. S8 N1s XPS spectra of the original GDMU-3 (black) and GDMU-3 @Fe$^{3+}$ (red).
Figure S9. The structures of dye molecules that were used in the experiment of dye adsorption.

Fig. S10. The two of dyes released from the dye \(\text{I} \) in pure DMF and saturated NaCl solution in DMF marked by UV absorption: a) MB, b) solvent yellow 2.

Fig. S11. The UV/vis absorption spectra for NB and L.