Supporting Information

A Straightforward Sequence to Alkyl 1H-Pyrrole-2,5-dicarboxylates
Starting from Acylhydrazono esters and Alkyl 2-Aroyl-1-chlorocyclopropanecarboxylates

Zhimei Huang, yuefa Gong*

School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, People’s Republic of China
gongyf@mail.hust.edu.cn

Table of Contents
I. 1H NMR spectra of the reaction product...S2
II. NMR spectra for all new compounds...S4
III Crystallographic information for 3ba..S26
I, 1H NMR spectra of the reaction product

1H NMR (400 MHz, CDCl$_3$) δ 10.42 (s, 1H), 7.87 – 7.80 (m, 4H), 7.54 – 7.48 (m, 1H), 7.42 (t, $J = 7.5$ Hz, 2H), 7.03 (d, $J = 2.7$ Hz, 1H), 6.92 (d, $J = 8.8$ Hz, 2H), 6.41 (2H), 4.38 (q, $J = 7.1$ Hz, 2H), 4.11 (q, $J = 7.1$ Hz, 2H), 3.86 (s, 3H), 1.37 (t, $J = 7.1$ Hz, 3H), 0.99 (t, $J = 7.1$ Hz, 3H).

General Procedure: A mixture of 0.2 mmol of 1c, 0.2 mmol of 2a and 0.4 mmol of Cs$_2$CO$_3$ in 2mL CH$_3$CN was stirred at 80°C until the starting materials disappeared by TLC analysis. Then the solvent CH$_3$CN was removed under reduced pressure. The mixture was then washed with water and extracted with CH$_2$Cl$_2$ for three times. Combined extracts were dried over anhydrous Na$_2$SO$_4$ and concentrated under reduced pressure. The residue was dissolved in CDCl$_3$ and measured by 1H NMR spectroscopy. The chemical shift at 6.41 was assigned to be the CONH$_2$ of benzamide. The residue was eluted using petroleum ether and ethyl acetate (8:1 to 2:1) on silica gel column chromatography, the product 3 and benzamide are collected.
Spectroscopic data for benzamide:

1H NMR (400 MHz, CDCl$_3$) δ 7.86 – 7.78 (m, 2H), 7.54 (t, $J = 7.4$ Hz, 1H), 7.45 (t, $J = 7.5$ Hz, 2H), 6.34 (s, 2H).

13C NMR (101 MHz, CDCl$_3$) δ 169.81, 133.21, 132.10, 128.65, 127.41.
II. NMR spectra for all new compounds

1. 3aa

![NMR spectrum of 3aa]

2. 3ba

![NMR spectrum of 3ba]
3. 3ca
5. 3ea
6. 3fa
7. 3ga
8. 3ha
11. 3ka
12. 3ab
3ab

13. 3ac
14. 3ad
15. 3ae
16. 3af
17. 3bb
18. 3cb
20. 3eb
21. 3fb
$3hb$

23. 3ib
III. Crystallographic information for 3ba
Figure 1. Crystal structure of 3ba

Figure 2. Projection of one unit cell