Supporting information

Construction of biocompatible regenerated cellulose/SPI composite beads by high-voltage electrostatic technique

Chen Li, Meng He, Zan Tong, Yinpeng Li, Wen Sheng, Lan Luo, Yu Tong, Hao Yu, Celine Huselstein, and Yun Chen*

aDepartment of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China. E-mail: yunchen@whu.edu.cn; Fax: +86 27 6875 9142; Tel.: +86 27 6875 9509

bSchool of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China

cDepartment of Medical Images, Gongan County People’s Hospital, Gongan 434300, China

dIngénierie Moléculaire et Physiopathologie Articulaire (IMoPA), UMR 7365 CNRS – Université de Lorraine, Biopôle, 54505 Vandoeuvre-lès-Nancy, France
Details in the methods for the measurement of FTIR spectra and XRD patterns of RCSB-3-n

The RCSB-v-n and raw materials (cellulose and SPI powder) were frozen in liquid nitrogen and vacuum-dried at 60 °C for 24 h. The beads were crushed into fine powder and pelletized with KBr into discs samples for measurement by FT-IR spectroscopy over wavelengths from 4000 to 400 cm$^{-1}$.

The XRD patterns of the RCSB-v-n and raw materials (cellulose and SPI powder) were collected using an X-ray diffractometer with monochromatic Cu Kα radiation ($\lambda=1.5418$ Å) at 40 kV and 30 mA with a scan rate of 4 °/min. The diffraction angle ranged from 4 to 40°.