Electronic Supplementary Information

A highly stable and biocompatible optical bioimaging nanoprobe

based on carbon nanosphere

Xiaolong Liu a,b, Zuwu Wei a,b, Ming Wu a,b, Xiaolong Zhang a,b, Da Zhang a,b, Buhong Li d*, Jingfeng Liu a,b,c*

a The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, People’s Republic of China

b The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, People’s Republic of China

c Liver Disease Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China

d Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provinicial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou, People’s Republic of China

*Corresponding Author (correspondence should be address to Buhong Li and Jingfeng Liu), Postal Address: Xihong Road 312, Fuzhou 350025, Fujian Province, P.R. China, Tel.: +86591-83705927 Fax.: +86591-83705927

E-mail addresses: bhli@fjnu.edu.cn, drjingfeng@126.com
Fig. S1 (A) Fluorescence excitation spectra of the CNs aqueous solutions ($\lambda_{em} = 436$ nm), (B) Fluorescence decay curves of CNs at 436 nm ($\lambda_{ex} = 405$ nm).
Fig. S2 Fluorescence emission spectra of the CNs at different excitation ranged from 280 to 405 nm.

Fig. S3 Fluorescence emission spectra at different pH conditions ranged from 1 to 14 (λ_{ex} = 350 nm).
Fig. S4 Fluorescence emission spectra of CNs (A) and DAPI (B) underwent continuous UV exposure of 1–8 h.

Fig. S5 Size distribution of glycine conjugated CNs measured by DLS.
Fig. S6 Confocal imaging of HepG-2 cells: non-treated cells (A), cells treated by CNs (B) or glycine conjugated CNs (C) with a CN’s concentration of 200 μg·mL⁻¹ for 3 h at 37 °C.