Supplementary material

Zwitterionic buffer-induced visible light excitation of TiO$_2$ for efficient pollutant photodegradation

Xiang Xiaoa,b, Wen-Wen Zhua, Yu-Bin Leia, Qiu-yue Liua, Qian Lia, Wen-Wei Lib^*

aSchool of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China

bCAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China

* Corresponding author:

Dr. Wen-Wei Li, Fax: +86-551-63607453; E-mail: wwli@ustc.edu.cn;
Fig. S1 XRD patterns (A) and TEM micrograph (B) of TiO$_2$ used in this study. The crystal phase of the TiO$_2$ nanoparticles was characterized by X-ray diffraction (XRD) patterns using a D8 instrument (Rigaku Co., Japan) with Cu K radiation ($\lambda=1.54718$ Å) in the 20 range from 10° to 80°. All of the diffraction peaks can be indexed to the cubic phase of anatase (Fig. S1a). The morphology was also observed by using high resolution transmission electron microscopy (HRTEM, JEM-2100, Jeol Co., Japan). The particle size was uniform, about 25-nm in average (Fig. S1b).
Fig. S2 Effect of methanol on MO photodegradation via LMCT excitation of TiO$_2$
Fig. S3 Pathway of MO reductive photodegradation by TiO$_2$-HEPES complex
Fig. S4 Structure of HEPES in response to changing pH.