Supporting Information for

Single fluorescent probe for reversible detecting copper ions and cysteine in pure water system

Yong Liu, Fangfang Meng and Weiying Lin*

Institute of Fluorescent Probes for Biological Imaging, School of Chemistry and Chemical Engineering, School of Biological Science and Technology, University of Jinan, Jinan, Shandong 250022, P.R. China.

E-mail: weiyanglin2013@163.com
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schemes S1-S2</td>
<td>S3</td>
</tr>
<tr>
<td>Figs. S1-S3</td>
<td>S5</td>
</tr>
<tr>
<td>Figs. S4-S6</td>
<td>S6</td>
</tr>
<tr>
<td>Figs. S7</td>
<td>S7</td>
</tr>
<tr>
<td>Spectral Characterization</td>
<td>S8-9</td>
</tr>
</tbody>
</table>
Several recognition Cys sites

Scheme S1. Several recognition Cys sites of previous reported

Synthesis

Scheme S2. The synthetic route to probe PI

Synthesis 4-(1H-phenanthro[9,10-d] imidazol-2-yl)benzene-1,3-diol (1):
A mixture of 2,4-dihydroxybenzaldehyde (0.28 g, 2 mmol), 9,10-phenanthroquinone (0.21 g, 1 mmol), and ammonium acetate (1.54 g, 20 mmol) in glacial AcOH (10 mL) was heated to 100 °C for 30 min. The hot solution was cooled to room temperature, and the resulting yellow solid was collected by filtration and washed with acetate acid, dilute sodium hydrogen carbonate solution, and water. The white solid was further dried under reduced vacuum, and then purified by silica gel column chromatography using acetone as eluent to afford the pure product. ¹H NMR (400 MHz, d₆-DMSO), δ (ppm): 8.79 (d, J = 8.2 Hz, 2H), 8.54 (d, J = 7.9 Hz, 2H), 7.84 – 7.55 (m, 6H), 7.40 (d, J = 0.9 Hz, 1H), 6.96 (s, 1H). ¹³C NMR (400 MHz, DMSO-d₆), δ (ppm): 160.31, 162.70, 133.73, 132.18, 130.80, 129.19, 127.55, 123.98, 120.01, 118.81, 115.80.

Synthesis of 3-hydroxy-4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenyl4-oxopentanoate (PI):
A mixture of 1 (0.20 g, 0.6 mmol), levulinic acid (0.17 g, 1.5 mmol), DCC (0.24 g, 1.2
mmol), and DAMP (0.007g, 0.06mmol) in dichloromethane (30mL) at 25 °C for 8h.

The organic phase was washed with water and saturated brine, dried over anhydrous magnesium sulfate overnight. After CH$_2$Cl$_2$ was removed, the crude product was purified by column chromatography with dichloromethane / methanol (20:1) as eluent, finally the blue solid was obtained for PI with a yield of 78%. 1H NMR (400 MHz, d$_6$-DMSO), δ (ppm): 1H NMR (400 MHz, DMSO) δ 13.75 (s, 1H), 13.45 (s, 1H), 8.91 (s, 2H), 8.55 (d, $J = 21.8$ Hz, 2H), 8.28 (d, $J = 8.5$ Hz, 1H), 7.90 – 7.52 (m, 4H), 7.02 – 6.66 (m, 2H), 2.89 (t, $J = 6.3$ Hz, 2H), 2.76 (dd, $J = 13.4$, 7.3 Hz, 2H), 2.18 (s, 3H), 2.09 (s, 1H). 13C NMR (400 MHz, DMSO-d6), δ (ppm): 13C NMR (100 MHz, DMSO-d6) δ 160.26, 159.17, 158.27, 156.54, 152.33, 148.73, 133.75, 126.51, 112.74, 110.82, 110.30, 107.35, 103.07, 47.42, 37.45, 33.26, 29.44, 27.83, 25.23, 24.36. HRMS (m/z): [M]$^+$ calcd for C$_{26}$H$_{19}$N$_2$O$_4$, 423.1400; found: 423.1467.
Fig. S1. Absorption spectra of compound PI (10 μM) with the increasing concentrations of Cu²⁺ ions (0-500 equiv) in pH 7.4 PBS at around 365 nm; inset, of change trend of absorption spectra at around 365 nm.

Fig. S2. Fluorescence changes of compound PI (10 μM) and PI-Cu(II) ensemble (PI/Cu(II)=1/250, v:v) at different pH values. Excitation wavelength: 365 nm

Fig. S3. (A) The PI-Cu(II) ensemble of fluorescent response for Cys and sulfur ions; (B) Fluorescence changes of the PI-Cu(II) ensemble with the increasing concentrations of sulfur ions (0-500 equiv) in pH 7.4 PBS.
Fig. S4. The 1H NMR spectrum of the addition of 1-2 equiv of Cu$^{2+}$ ions to dye PI and addition of 4 equiv Cys to the ensemble in d$_6$ DMSO/D$_2$O (4/1).

Fig. S5. Intense peak at m/z 911.2 corresponding to (2PI- Cu(II) + H)$^+$ is present in the HMRS spectrum.

Fig. S6. Intense peak at m/z 298.2 and 425.1 corresponding to (Cys-Cu(II))$^+$ and (PI)$^+$ is present in the HMRS spectrum, respectively.
Fig. S7. MTT assay
Spectral Characterization

Fig. S8. 1H NMR spectrum of compound 1 in CD$_3$Cl.

Fig. S9. 13C NMR spectrum of compound 1 in CD$_3$Cl.
Fig. S10 1H NMR spectrum of compound PI in d_6-DMSO.

Fig. S11. 13C NMR spectrum of compound 1 in PI in d_6-DMSO.

Fig. S12. ESI-MS spectrum of compound PI.