High-rate long-life of Li-ion batteries using reduced graphene oxide/Co$_3$O$_4$ as anode materials

Junkai He,a Ying Liu,b Yongtao Meng,c Xiangcheng Sun,b Sourav Biswas,c Min Shen,c Zhu Luo,a Ran Miao,c Lichun Zhang,a William E. Mustainb and Steven L. Suibb,c,*

a. Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269, USA.

b. Department of chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, CT 06269, USA.

c. Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Unit 3060, Storrs, CT 06269, USA.

Fig. S1. Representative profile of (a) temperature, T, (b) power, P, and (c) pressure, p monitored when the reaction was performed at 150 °C for 30 min.
Fig. S2. TGA curves of Co$_3$O$_4$ and rGO/Co$_3$O$_4$ composites.

Fig. S3. Powder XRD patterns for Co$_3$O$_4$ and rGO/Co$_3$O$_4$ composites with various nominal ratios of GO.
Table S1. The BET surface area of different materials used in our experiments

<table>
<thead>
<tr>
<th>GO (m2/g)</th>
<th>rGO (m2/g)</th>
<th>Co$_3$O$_4$ (m2/g)</th>
<th>rGO/Co$_3$O$_4$ (m2/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>274</td>
<td>70</td>
<td>222</td>
</tr>
</tbody>
</table>

Fig. S4. Cyclic voltammograms (CV) curves of rGO at a current rate of 1 C.

Fig. S5. Cycling performance of 2.5, 5, 15, and 30 wt% of rGO/Co$_3$O$_4$ composites at a current rate of 1 C.
Fig. S6. Structure and morphology characterization of rGO/Co$_3$O$_4$ electrode after over 900 cycles. (a) HRTEM image, (b) SAED pattern, and (c) XRD pattern of rGO/Co$_3$O$_4$ electrode.