Supplementary Material for

Adsorption and heterogeneous reactions of
ClONO₂ and N₂O₅ on/with NaCl aerosol

Yanhui Sunᵃᵇ, Qingzhu Zhang*ᵃ, Wenxing Wangᵃ

ᵃ Environment Research Institute, Shandong University, Jinan 250100,
P. R. China

ᵇ College of Environment and Safety Engineering, Qingdao University of
Science and Technology, Qingdao 266042, Shandong, P. R. China

Keywords: Heterogeneous reactions, ClONO₂ and N₂O₅, NaCl (100)
surface, Density functional theory.

*Corresponding author. E-mail: zqz@sdu.edu.cn
Fax: 86-531-88361990
Thirteen pages

Contains seven Figures

Figure S1. DMol3 optimized geometries for H$_2$O, ClONO$_2$ and N$_2$O$_5$. Distances are in angstrom, and angles are in degree. The values in parentheses are experimental data.

Figure S2. Possible configurations of adsorbed ClONO$_2$ on the NaCl (100) surface.

Figure S3. Possible configurations of adsorbed N$_2$O$_5$ on the NaCl (100) surface.

Figure S4. Optimized geometries of the “free products” on the NaCl (100) surface.

Figure S5. Reaction schemes of ClONO$_2$ and N$_2$O$_5$ with HCl or H$_2$O on the NaCl (100) surface. The calculated data without zero-point energy (ZPE) correction are in black and with zero-point energy (ZPE) correction are in red.

Figure S6. Reaction schemes of H$_2$O adsorption and reconstruction on the NaCl (100) surface. The calculated data without zero-point energy (ZPE) correction are in black and with zero-point energy (ZPE) correction are in red.

Figure S7. Reaction schemes of ClONO$_2$ and N$_2$O$_5$ with the reconstructed NaCl (100) surface. The calculated data without zero-point energy (ZPE) correction are in black and with zero-point energy (ZPE) correction are in red.
Figure S1. Dmol³ optimized geometries for H₂O, ClONO₂ and N₂O₅. Distances are in angstrom, and angles are in degree. The values in parentheses are experimental data.
Figure S2. Possible configurations of adsorbed ClONO$_2$ on the NaCl (100) surface.
Figure S2 (Continued)
Figure S2 (Continued)
Figure S3. Possible configurations of adsorbed N$_2$O$_5$ on the NaCl (100) surface.
Figure S3 (Continued)
Figure S4. Optimized geometries of the “free products” on the NaCl (100) surface.
Figure S5. Reaction schemes of ClONO$_2$ and N$_2$O$_5$ with HCl or H$_2$O on the NaCl (100) surface. The calculated data without zero-point energy (ZPE) correction are in black and with zero-point energy (ZPE) correction are in red.

Chemical Equations:

1. \(\text{III-6} + \text{HCl} \xrightarrow{\Delta E_r = -12.02} \text{IM1} \xrightarrow{\Delta E_r = -11.42} \text{P1} \xrightarrow{\Delta E_r = 8.56} \text{P1-p} \)
 \(\Delta E_b = 5.42 \)
 \(\Delta E_r = -21.68 \)
 \(\Delta E_b = 5.35 \)
 \(\Delta E_r = -18.98 \)

2. \(\text{III-6} + \text{H}_2\text{O} \xrightarrow{\Delta E_r = -18.22} \text{IM2} \xrightarrow{\Delta E_r = -19.03} \text{P2} \xrightarrow{\Delta E_r = -12.82} \text{P2-p} \)
 \(\Delta E_b = 7.01 \)
 \(\Delta E_r = -1.96 \)
 \(\Delta E_b = 7.13 \)
 \(\Delta E_r = -1.15 \)

3. \(\text{II-4'} + \text{HCl} \xrightarrow{\Delta E_r = -6.69} \text{IM3} \xrightarrow{\Delta E_r = -5.88} \text{P3} \xrightarrow{\Delta E_r = -5.88} \text{P3-p} \)
 \(\Delta E_b = 4.80 \)
 \(\Delta E_r = -15.67 \)
 \(\Delta E_b = 4.32 \)
 \(\Delta E_r = -12.99 \)

4. \(\text{II-4'} + \text{H}_2\text{O} \xrightarrow{\Delta E_r = -9.42} \text{IM4} \xrightarrow{\Delta E_r = -7.90} \text{P4} \xrightarrow{\Delta E_r = -0.91} \text{P4-p} \)
 \(\Delta E_b = 5.75 \)
 \(\Delta E_r = -19.91 \)
 \(\Delta E_b = 5.96 \)
 \(\Delta E_r = -17.82 \)
Figure S6. Reaction schemes of H₂O adsorption and reconstruction on the NaCl (100) surface. The calculated data without zero-point energy (ZPE) correction are in black and with zero-point energy (ZPE) correction are in red.

\[
\text{NaCl} + \text{H}_2\text{O} \xrightarrow{\Delta E_r = -13.99} \text{IM5} \xrightarrow{\Delta E_r = -11.45} \text{TS5} \xrightarrow{\Delta E_r = 10.33} \text{IM6} \\
\Delta E_p = 14.03 \\
\Delta E_r = 14.00 \\
\Delta E_r = 10.71
\]
Figure S7. Reaction schemes of ClONO$_2$ and N$_2$O$_5$ with the reconstructed NaCl (100) surface. The calculated data without zero-point energy (ZPE) correction are in black and with zero-point energy (ZPE) correction are in red.

IM6 + ClONO$_2$ \rightarrow IM7 \rightarrow IM8 \rightarrow P5 \rightarrow P5-p

$\Delta E_r = -20.37 \quad \Delta E_r = -19.80 \quad \Delta E_r = 0.24 \quad \Delta E_r = 0.60 \quad \Delta E_r = -5.35 \quad \Delta E_r = -5.35$

TS6 \rightarrow IM9 \rightarrow IM10 \rightarrow P6 \rightarrow P6-p

$\Delta E_r = -20.44 \quad \Delta E_r = -19.80 \quad \Delta E_r = 0.45 \quad \Delta E_r = 0.65 \quad \Delta E_r = -5.35 \quad \Delta E_r = -5.44$

TS7 \rightarrow IM11 \rightarrow IM12 \rightarrow P7 \rightarrow P7-p

IM6 + N$_2$O$_5$ \rightarrow IM11 \rightarrow IM12 \rightarrow P7 \rightarrow P7-p

$\Delta E_r = -14.35 \quad \Delta E_r = -14.11 \quad \Delta E_r = 0.99 \quad \Delta E_r = 1.03 \quad \Delta E_r = -10.63 \quad \Delta E_r = -10.63$

TS8 \rightarrow IM13 \rightarrow IM14 \rightarrow P8 \rightarrow P8-p

IM6 + N$_2$O$_5$ \rightarrow IM13 \rightarrow IM14 \rightarrow P8 \rightarrow P8-p

$\Delta E_r = -14.29 \quad \Delta E_r = -14.04 \quad \Delta E_r = 0.49 \quad \Delta E_r = 0.47 \quad \Delta E_r = -9.91 \quad \Delta E_r = -9.91$

TS9 \rightarrow IM15 \rightarrow IM16 \rightarrow P9 \rightarrow P9-p

IM6 + N$_2$O$_5$ \rightarrow IM15 \rightarrow IM16 \rightarrow P9 \rightarrow P9-p

$\Delta E_r = -14.00 \quad \Delta E_r = -13.86 \quad \Delta E_r = 0.48 \quad \Delta E_r = 0.43 \quad \Delta E_r = -9.96 \quad \Delta E_r = -9.96$