Electronic Supplementary Information for:

A facile strategy to fabricate covalently linked raspberry-like nanocomposites with pH and thermo tunable structures

Ruiwei Guoab, Xing Chena, Xiaolei Zhuc, Anjie Donga, Jianhua Zhang*ab

a Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China

b Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, China

c China National Chemical Corporation, Beijing, 100080, China

Corresponding author: Jianhua Zhang

E-mail address: jhuazhang@tju.edu.cn;

Tel.: +862 227 402 364; Fax: +862 227 890 710.
Scheme S1. Schematic illustration of synthesis of BTPT
Figure S1. 1HNMR spectrum of BTPT
Figure S2. FTIR spectrum of BTPT
Scheme S2. Schematic illustration of synthesis of Tsi-PDMAEMA-PSt
Figure S3. Zeta potential of silica particles in water at different pH values
Figure S4. Typical SEM and TEM images of silica@polymer composite particles after ultrasonication treatment.
Figure S5. Photographs of the thermo-triggered aggregation-disaggregation transitions of silica@polymer particles at pH 7.4. Thermoresponsiveness of silica@polymer particles are due to the reversible hydrophilic-hydrophobic transitions of PDMAEMA chains triggered by temperature.
Figure S6. Typical SEM image of silica@polymer particles collected at 48 °C