Supporting Information

Specific detection of potassium ion in serum by a modified G-quadruplex method

Shan Zhang1, +, Ruibin Zhang2, +, Baojin Ma1, Jichuan Qiu1, Jianhua Li1, Yuanhua Sang1, Wei Liu1, *, Hong Liu1, *

1 State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China

2 Blood Purification Center, Jinan Central Hospital, Jinan, 250013, China

* Corresponding Author. Hong Liu, hongliu@sdu.edu.cn;
Wei Liu, weiliu@sdu.edu.cn

+ These authors contributed equally to this work and they should be regarded as co-first author.
Table S1. Comparison between method in this study and other existing methods based on G-quadruplex.

From properties of several different methods, we can see that the dual-labeled modified G-quadruplex method we presented has much better selectivity and linearity even in real serum containing all other metal ions together.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Reagents</th>
<th>Schematic Diagram</th>
<th>Experimental Principle</th>
<th>Selectivity</th>
<th>Linearity</th>
<th>Sensitivity to K⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Crystal violet–G-quadruplex complexes</td>
<td></td>
<td>Dual-labeled modified G-quadruplex complexes can be observed in the presence of K⁺.</td>
<td></td>
<td></td>
<td>0-10 mM</td>
</tr>
<tr>
<td>II</td>
<td>DAP-3 complex with Crystal violet</td>
<td></td>
<td>Distance between crystal violet complex and FRET group is not significant because of the large distance.</td>
<td></td>
<td></td>
<td>0-50 mM</td>
</tr>
<tr>
<td>III</td>
<td>Dual-labeled G-quadruplex fluorescence</td>
<td></td>
<td>FRET between two FRET groups is not significant because of the large distance.</td>
<td></td>
<td></td>
<td>0-30 mM</td>
</tr>
<tr>
<td>IV</td>
<td>Dual-labeled modified G-quadruplex method</td>
<td></td>
<td>FRET between two FRET groups is not significant because of the large distance.</td>
<td></td>
<td></td>
<td>0-30 mM</td>
</tr>
</tbody>
</table>

IV. Method presented in our study.
S1. The effect of pH and temperature to the modified dual-labeled G-quadruplex system.

Figure S1. (a) Fluorescence spectra of the dual labeled TBA when pH changed; (b) Corresponding plot of R vs pH and linear fit; (c) Fluorescence spectra of the dual labeled TBA when temperature changed; (d) Corresponding plot of R vs Temperature and linear fit. Error bars show standard deviation of triplicate measurements.