Supporting Information

Fabricating g-C₃N₄/CuOₓ heterostructure with tunable valence transition for enhanced photocatalytic activity

Yanbiao Shi,a Zhanxue Yang,a Yan Liu,b Jie Yu,a Fangping Wang,a Jinhui Tong,a Bitao Su,a and Qizhao Wang*a,c

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
bShanghai Academy of Spaceflight Technog, Shanghai, 201109, China
cKey Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, Lanzhou 730070, China

*To whom correspondence should be addressed

E-mail: wangqizhao@163.com; qizhaosjtu@gmail.com

Tel/Fax: 86-931-7972677
Figures

Fig. S1. SEM images of as-synthesized samples. (a) CN7.5/CuO_x; (b) CN10/CuO_x.
Fig. S2. The corresponding plots of $(ahv)^2$ vs. hv curve of CN$_5$-CuO$_x$ composites.
Fig. S3. The whole XPS spectrum of CN5-CuOx sample.
Fig. S4. Plots of photogradation of MO over CN5-CuO_x photocatalyst with different scavengers under stimulated sunlight irradiation.