Electronic Supplementary Information

Propane dehydrogenation over the Ce-containing ZSM-5 supported platinum-tin catalysts: Ce concentration effect and reaction performance analysis

Yiwei Zhang,a Mengwei Xue,b Yuming Zhou,a* Hongxing Zhang,a
Wen Wang,a Qianli Wang,a Xiaoli Sheng a

a School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R.China

b Biochemical and Environmental Engineering College, Nanjing Xiaozhuang University, Nanjing 211171, P.R.China

Fig. S1 XRD patterns of different samples:
(1) Ce(0%)-ZSM-5; (2) Ce(0.35%)-ZSM-5; (3) Ce(0.76%)-ZSM-5;
(4) Ce(1.15%)-ZSM-5; (5) Ce(1.58%)-ZSM-5
Fig. S2 IR spectra of pyridine adsorbed for different samples: (1) Ce(0%)-ZSM-5; (2) PtSnNa/Ce(0%)ZSM-5; (3) PtSnNa/Ce(0.35%)ZSM-5; (4) PtSnNa/Ce(0.76%)ZSM-5; (5) PtSnNa/Ce(1.15%)ZSM-5; (6) PtSnNa/Ce(1.58%)ZSM-5.

Fig. S3 Selectivities to alkanes (alkenes) of the different catalysts after reaction for 10 h: (1) PtSnNa/Ce(0%)ZSM-5; (2) PtSnNa/Ce(0.35%)ZSM-5; (3) PtSnNa/Ce(0.76%)ZSM-5; (4) PtSnNa/Ce(1.15%)ZSM-5; (5) PtSnNa/Ce(1.58%)ZSM-5. Reaction conditions: 590 °C, n(H₂)/n(C₃H₈)=0.25, m(cat)=2.0 g, WHSV=3.0 h⁻¹.
Fig. S4 The performance comparison of the different catalysts in the dehydrogenation of propane at 590 °C: (1) PtSnNa/Ce(0%)ZSM-5; (2) PtSnNa/Ce(0.35%)ZSM-5; (3) PtSnNa/Ce(0.76%)ZSM-5; (4) PtSnNa/Ce(1.15%)ZSM-5; (5) PtSnNa/Ce(1.58%)ZSM-5. Regeneration conditions: catalyst regeneration was performed by oxidative treatment using pure air (40ml/min) for 2h at 500 °C. Then, the catalyst was reduced in flowing pure hydrogen (40ml/min) for 4h at 500 °C.