Electronic Supplementary Information (ESI)

Tunable Emission Color and Mixed Valence State via the Modified Activator Site in AlN-Doped Sr3SiO5:Eu Phosphor

Wei Li, Jin Wang, Haoran Zhang, Yingliang Liu, Bingfu Lei, Jianle Zhuang, Jianghu Cui, Mingying Peng and Yue Zhu

a Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China

b The State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P.R. China

Figure S1. XRD patterns of Sr_{2+y}Si_{1-x}Al_xO_{5-2x}N_x:0.03Eu (x = 0.3 and 0.5), together with the standard data for Sr3SiO5 as reference.

Figure S2. Asymmetry ratio of the emission intensities of Eu^{3+} transitions of ^5D_0→^7F_2 and ^5D_0→^7F_1 as a function of x values.

* Corresponding author: tleibf@scau.edu.cn (B. Lei).
Figure S3. Detailed XRD patterns from 30° to 31.5° of Sr$_{2.97}$Si$_{1-x}$Al$_x$O$_{5.2}$N$_x$:0.03Eu ($x = 0-0.2$).

Figure S4. Decay curves ($\lambda_{ex} = 310$ nm, $\lambda_{em} = 619$ nm) of Eu in Sr$_{2.97}$Si$_{1-x}$Al$_x$O$_{5.2}$N$_x$:0.03Eu ($x = 0.03$, 0.05, 0.1 and 0.2).

Figure S5. PL ($\lambda_{ex} = 310$ nm) spectra of Sr$_{2.97}$Si$_{1-x}$Al$_x$O$_{5.2}$N$_x$:0.03Eu ($x = 0.02$) under various temperatures (300-460 K).