Supporting Information

Controllable Synthesis of Three Dimensional Electrodeposited Co-P Nanospheres Arrays as Efficient Electrocatalyst for Overall Water Splitting

Guan-Qun Hana, b, Xiao Lia, Yan-Ru Liua, Bin Dong*a, b, Wen-Hui Hua, Xiao Shanga, Xin Zhaoa, Yong-Ming Chaia, Yun-Qi Liua, Chen-Guang Liu*a

a State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China

b College of Science, China University of Petroleum (East China), Qingdao 266580, PR China

* Corresponding author. Email: dongbin@upc.edu.cn (B. Dong), cgliu@upc.edu.cn (C.-G. Liu)
Tel: +86-532-86981376, Fax: +86-532-86981787
The electrodeposition curve of Co-P is exhibited in Fig. S1. The electrodeposition electrolyte is composed of 50 mM CoCl$_2$·6H$_2$O, 0.5 M NaH$_2$PO$_4$·H$_2$O and 0.1 M NaOAc. A CV technique was applied, with the potential region from -0.3 V to -1.0 V vs. Ag/AgCl. CV cycles are 15 and the scan rate is 30 mV s$^{-1}$. The electrodeposition mechanism of the Co-P film is as follows: H$_2$PO$_2^-$ + Co$^{2+}$ + 3 e$^-$ = Co-P + 2 OH$^-$. And the photograph of the obtained Co-P film is shown in Fig. S2. The left sample is the electrodeposited Co-P/FTO and the right is the blank FTO. It can be clearly seen that after electrodeposition, black coverage Co-P film was grown on the transparent FTO.
Fig. S1. Cyclic voltammograms during the deposition of the Co-P film using the potential cycling method.
Fig. S2. Photographs of the Co-P/FTO (left) and blank FTO (right)