Electronic Supplementary Information (ESI)

Contents:

1. Theoretical Computation

First-principles density functional theory calculations were carried out to study the molecular geometry structure and absorption properties of the organic dyes/TiO\(_2\) systems. The ground-state molecular geometries were optimized with SIESTA\(^2\), using the pseudopotentials of the Troullier-Martins\(^3\) type to model the atomic cores, the Perdew-Burke-Ernzerhof (PBE)\(^4\) exchange-correlation functional, and a local basis set of double-\(\zeta\)-polarized (DZP) orbitals. An auxiliary real space grid equivalent to a plane wave cutoff of 150 Ry and point k-sampling was used. Geometries were optimized until forces on non-fixed atoms are below 0.01 eV/Å, which were considered fully relaxed. The stoichiometric TiO\(_2\) anatase (101) surface, was modeled with a periodically repeated slab. A large simulation cell, 10.24 \(\times\) 15.14 \(\times\) 40.00 Å\(^3\), containing a 96-atom surface with six atomic layers of TiO\(_2\) and organic molecules was adopted. The slab was separated from its periodic images along the surface normal by a vacuum region of \(\sim\)15 Å. The energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of molecules were calculated using B3LYP functional and 6-311++G(d,p) basis set as implemented in Gaussian 09 program. Optical absorption spectra were also calculated based on linear response TDDFT using the CAM-B3LYP functional and 6-31G(d) basis set. Optical absorption spectra were calculated based on linear response TDDFT using the B3LYP (for INPBA, INPDT, and INPOD) and CAM-B3LYP functional (INPA and INCA) and 6-31G(d) basis set, as implemented in Gaussian 09 program. The Polarizable Continuum Model\(^1\) was used to account for the solvation effect (in CH\(_2\)Cl\(_2\)).
Scheme S1 Synthetic route of three dyes.

Fig. S1 Absorption of three dyes adsorbed on TiO$_2$ film.

Fig. S2 Cyclic voltammetry curves of dye in CH$_2$Cl$_2$ solution.
Fig. S3 Absorption of three dyes in the desorption solution.
Fig. S4 1HNMR spectral of INPBA.

Fig. S5 1HNMR spectral of INPDT.

Fig. S6 1HNMR spectral of INPOD.
Fig. S7 13CNMR spectral of INPBA.

Fig. S8 13CNMR spectral of INPDT.
Fig. S9 13CNMR spectral of INPDT.
Fig. S10 Stacking of dimers

Fig. S11 Schematic structures of dimers of INP-dyes.

References