Supplementary information

Multi-block copolymers with fluorene-containing hydrophilic segments densely functionalized by side-chain quaternary ammonium groups as anion exchange membranes

Liuhong Li,① Xi Yue, ① Wenjun Wu, ① Wuxin Yan, ① Mingjian Zeng, ① You Zhou, ① Shijun Liao ① and Xiuhua Li ①* ①

① School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
① The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, P. R. China.

Corresponding Author

* Tel & Fax: 8620 – 22236591. E-mail: lixiuhua@scut.edu.cn
I. Figures and tables

II. Experimental section
I. Figures and tables

Fig. S1 1H NMR spectra of the oligomer-Fs (a) $X = 5$ and (b) $X = 7$.

Fig. S2 1H NMR spectra of oligomer-OHs (a) $Y = 10$, (b) $Y = 13$ and (c) $Y = 17$.

Fig. S3 1H NMR spectra of (a) BrMPAES-$X5Y10$, (b) BrMPAES-$X5Y13$, (c) BrMPAES-$X5Y17$, (d) BrMPAES-$X7Y10$, (e) BrMPAES-$X7Y13$ and (f) BrMPAES-$X7Y17$.

Fig. S4 AFM pattern of QMPAES-$X5Y10$

Table S1 $\text{IEC}_{\text{in}}, \text{IEC}_{\text{wet}}, \sigma, \sigma/\text{IEC}_{\text{in}}, \sigma/\text{IEC}_{\text{wet}}$ of the QMPAESs membranes and some reported AEMs.
Fig. S1 1H NMR spectra of the oligomer-Fs (a) $X = 5$ and (b) $X = 7$.

Fig. S2 1H NMR spectra of oligomer-OHs (a) $Y = 10$, (b) $Y = 13$ and (c) $Y = 17$.
Fig. S3 1H NMR spectra of (a) BrMPAES-X5Y10, (b) BrMPAES-X5Y13, (c) BrMPAES-X5Y17, (d) BrMPAES-X7Y10, (e) BrMPAES-X7Y13 and (f) BrMPAES-X7Y17.

Fig. S4 AFM pattern of QMPAES-X5Y10
Table S1 IEC_m, IEC_{v,wet}, σ, σ/IEC_m, σ/IEC_{v,wet} of the QMPAESs membranes and some reported AEMs

<table>
<thead>
<tr>
<th>Membrane</th>
<th>IEC<sub>m</sub> (meq g<sup>-1</sup>)</th>
<th>IEC<sub>v,wet</sub> (meq cm<sup>-3</sup>)</th>
<th>σ (mS cm<sup>-1</sup>)</th>
<th>σ/IEC<sub>m</sub> (mS g/(cm mmol))</th>
<th>σ/IEC<sub>v,wet</sub> (mS cm<sup>2</sup>/mmol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QMPAES-X7Y10</td>
<td>1.28</td>
<td>0.52</td>
<td>0.51</td>
<td>27.4</td>
<td>85.0</td>
</tr>
<tr>
<td>QMPAES-X7Y13</td>
<td>1.02</td>
<td>0.70</td>
<td>0.64</td>
<td>27.2</td>
<td>51.9</td>
</tr>
<tr>
<td>QMPAES-X7Y17</td>
<td>0.90</td>
<td>0.72</td>
<td>0.68</td>
<td>11.6</td>
<td>38.7</td>
</tr>
<tr>
<td>QMPAES-X5Y10</td>
<td>1.06</td>
<td>0.78</td>
<td>0.74</td>
<td>21.4</td>
<td>58.0</td>
</tr>
<tr>
<td>QMPAES-X5Y13</td>
<td>0.83</td>
<td>0.56</td>
<td>0.56</td>
<td>16.5</td>
<td>44.1</td>
</tr>
<tr>
<td>QMPAES-X5Y17</td>
<td>0.81</td>
<td>0.64</td>
<td>0.61</td>
<td>9.7</td>
<td>23.0</td>
</tr>
<tr>
<td>QPAES-X8Y8<sup>3</sup></td>
<td>1.60</td>
<td>1.12<sup>a</sup></td>
<td>1.05</td>
<td>18.3<sup>a</sup></td>
<td>75.8</td>
</tr>
<tr>
<td>QPAES-X16Y8<sup>3</sup></td>
<td>1.24</td>
<td>0.62<sup>a</sup></td>
<td>0.56</td>
<td>26.1<sup>a</sup></td>
<td>51.5</td>
</tr>
<tr>
<td>QPAES-X16Y10<sup>4</sup></td>
<td>1.15</td>
<td>0.85<sup>a</sup></td>
<td>0.77</td>
<td>11.8<sup>a</sup></td>
<td>37.8</td>
</tr>
<tr>
<td>QPAES-X20Y18<sup>5</sup></td>
<td>1.54</td>
<td>0.98<sup>a</sup></td>
<td>0.87</td>
<td>13.3<sup>a</sup></td>
<td>64.1</td>
</tr>
<tr>
<td>QPAE-X15Y8<sup>2</sup></td>
<td>1.13</td>
<td>0.90<sup>a</sup></td>
<td>0.77<sup>c</sup></td>
<td>9.8<sup>a</sup></td>
<td>27.6<sup>c</sup></td>
</tr>
<tr>
<td>QPAE-X25Y21<sup>2</sup></td>
<td>1.45</td>
<td>1.07<sup>a</sup></td>
<td>0.86<sup>d</sup></td>
<td>16.9<sup>a</sup></td>
<td>37.3<sup>c</sup></td>
</tr>
<tr>
<td>QPE-X16Y11<sup>3</sup></td>
<td>0.79</td>
<td>___<sup>d</sup></td>
<td>___<sup>d</sup></td>
<td>8.8<sup>c</sup></td>
<td>___<sup>d</sup></td>
</tr>
<tr>
<td>QPE-X22Y11<sup>3</sup></td>
<td>1.13</td>
<td>___<sup>d</sup></td>
<td>___<sup>d</sup></td>
<td>47.0<sup>c</sup></td>
<td>___<sup>d</sup></td>
</tr>
<tr>
<td>ds-PAE-75<sup>6</sup></td>
<td>1.49</td>
<td>1.27<sup>b</sup></td>
<td>1.03</td>
<td>21.9<sup>b</sup></td>
<td>47.3</td>
</tr>
<tr>
<td>4(X35)<sup>5</sup></td>
<td>1.01</td>
<td>1.14<sup>a</sup></td>
<td>___<sup>d</sup></td>
<td>15<sup>a</sup></td>
<td>42.6</td>
</tr>
<tr>
<td>4(X50)<sup>5</sup></td>
<td>1.32</td>
<td>1.40<sup>a</sup></td>
<td>___<sup>d</sup></td>
<td>26<sup>a</sup></td>
<td>40.0</td>
</tr>
<tr>
<td>ImPES-0.55<sup>6</sup></td>
<td>0.98</td>
<td>1.29<sup>a</sup></td>
<td>___<sup>d</sup></td>
<td>21.9<sup>a</sup></td>
<td>51.7</td>
</tr>
<tr>
<td>ImPES-0.70<sup>6</sup></td>
<td>1.23</td>
<td>1.48<sup>a</sup></td>
<td>___<sup>d</sup></td>
<td>32.6</td>
<td>69.2</td>
</tr>
<tr>
<td>PAES-Q-12<sup>7</sup></td>
<td>1.65</td>
<td>___<sup>d</sup></td>
<td>___<sup>d</sup></td>
<td>22.9<sup>a</sup></td>
<td>54.0</td>
</tr>
<tr>
<td>QA-PSf-g-PEG350<sup>8</sup></td>
<td>1.36</td>
<td>___<sup>d</sup></td>
<td>___<sup>d</sup></td>
<td>24.9<sup>a</sup></td>
<td>70.2</td>
</tr>
</tbody>
</table>

^a Determined at 20 °C. ^b Determined at 25 °C. ^c Determined at 60 °C. ^d Not reported in the literature.

II. Experimental section

¹H NMR characterization.

¹H NMR spectra were recorded on a Bruker AVANCE 400S with tetramethylsilane (TMS) as the standard and CDCl₃ or DMSO-d₆ as the solvent.

Atomic Force Microscopy (AFM) characterization.

Tapping mode Atomic Force Microscopy (AFM) was performed on a Bruker Multimode 8 scanning probe microscopy with a probe of MPP-11100-10 (40 N/m, 300 kHz). The scanning frequency is 1 Hz. The sample was equilibrated at 60% RH for more than 24 h before test.
References