Electronic Supplementary Information (ESI)

Dioxotungsten(VI) complexes with isoniazid-related hydrazones as (pre)catalysts for olefin epoxidation: solvent and ligand substituent effects

Višnja Vrdoljak,* Jana Pisk, Biserka Prugovečki, Dominique Agustin,* Predrag Novak and Dubravka Matković-Čalogović

Contents

X-Ray Crystallography. Single crystal diffraction.	2
Fig. S1 ORTEP drawings of the $[WO_2(acac)_2] \cdot 0.5C_6H_5Me$.	
Fig. S2 ORTEP drawings of 1a, 1b and 3a.	
Table S1 Selected bond lengths (Å) and angles (°) for compound [WO ₂ (acac) ₂].	0.5C ₆ H ₅ Me4
Table S2 Angle between the benzyl and the pyridine moieties, φ (°) and angle be	etween
the five- and six-membered chelate rings, ψ (°) for compounds 1a, 1b and 3a	5
Table S3 Geometry of intra- and intermolecular hydrogen bonds (Å, °) for comp	oounds
1a, 1b and 3a	5
Table S4 Geometry of $\pi \cdots \pi$ interactions involved in the formation of dimers and	l between
neighbouring dimer molecules for compounds 1a, 1b and 3a	6
Powder X-ray diffraction patterns	7
NMR numbering scheme	8
NMR spectroscopy	9
Table S5 ¹ H and ¹³ C chemical shifts (ppm) of H $_2L^{3OMe}$, H $_2L^{4OMe}$ and H $_2L^{H}$	9
Table S6 ¹ H and ¹³ C chemical shifts (ppm) of complexes 1a-3a and 1b -3b	10
Fig. S4-S6 ¹ H and ¹³ C NMR spectra of $1a-3a$	11

X-Ray Crystallography. Single crystal diffraction.

Fig. S1 ORTEP drawings of the $[WO_2(acac)_2] \cdot 0.5C_6H_5Me$ with the atom-labeling scheme (displacement ellipsoids of non-hydrogen atoms are drawn at the 50 % probability level).

Fig. S2 ORTEP drawings of 1a, 1b and 3a with the atom-labeling scheme (displacement ellipsoids of non-hydrogen atoms are drawn at the 50% probability level).

W-O1	1.989(4)
W–O2	2.166(3)
W-O3	2.170(4)
W–O4	1.971(4)
W-O5	1.718(4)
W-O6	1.712(4)
O1-C1	1.296(7)
C1-C2	1.355(9)
C2-C3	1.386(9)
C3–O2	1.267(7)
O3–C6	1.247(8)
C6-C7	1.415(8)
C7–C8	1.350(9)
C8–O4	1.296(8)
O1-W-O2	80.97(14)
O1-W-O3	82.27(17)
O1-W-O4	159.45(17)
O1-W-O5	92.67(18)
O1-W-O6	98.84(19)
O2-W-O3	75.54(17)
O2-W-O4	83.15(17)
O2-W-O5	164.71(17)
O2-W-O6	90.27(19)
O3-W-O4	81.19(17)
O3-W-O5	89.89(19)
O3-W-O6	165.5(2)
O4-W-O5	99.4(2)
O4-W-O6	94.18(19)
O5-W-O6	104.5(2)

Table S1 Selected bond lengths (Å) and angles (°) for compound $[WO_2(acac)_2] \cdot 0.5C_6H_5Me$

Table S2 Angle between the phenyl and the pyridine moieties, φ (°) and angle between the five- and six-membered chelate rings, ψ (°) for compounds **1a**, **1b** and **3a**

	arphi /°	ψ /°	
1a	7.39(11)	10.94(17)	
1b	5.20(14)	9.34(19)	
3a	8.94(12)	16.87(16)	

Table S3 Geometry of intra- and intermolecular hydrogen bonds (Å, °) for compounds 1a, 1b and 3a

	D–H…A	D-H (Å)	H···A (Å)	D…A (Å)	D–H···A(°)
	O5-H50N3ª	0.83	1.9	2.723(4)	172
1a	C5-H5O4 ^b	0.93	2.47	3.097(4)	125
	С7–Н7…О3°	0.93	2.49	3.097(4)	123
	C15-H18bO4d	0.96	2.52	3.374(5)	148
	O5-H50-01	0.83	2.38	2.811(4)	113
	O5-H50N3e	0.83	2.01	2.692(4)	139
1b	$C4-H4\cdots O4^{f}$	0.93	2.58	3.421(5)	151
	C7–H7…O3 ^g	0.93	2.35	3.253(4)	165
	C15-H15bO4 ^h	0.96	2.57	3.408(5)	146
	O5-H50N3 ⁱ	0.72(3)	1.98(3)	2.700(4)	175(4)
3 a	C3–H3…O2 ^j	0.93	2.51	3.380(4)	156
	$C7-H7\cdots O4^{h}$	0.93	2.57	3.461(4)	161

^a2-x,2-y,2-z; ^bx,1+y,z; ^c2-x,1-y,1-z; ^d2-x,1-y,2-z; ^e-x,-y,1-z; ^f1-x,-y,1-z; ^g-1+x,y,z; ^h-1/2+x,1/2-y,-1/2+z; ⁱ1-x,-y,-z; ^j1/2-x,-1/2+y,1/2-z

Table S4 Geometry of $\pi \cdots \pi$ interactions involved in the formation of dimers and between neighbouring dimer molecules for compounds 1a, 1b and 3a

	$d(\pi \cdot \cdot \cdot \pi) / Å$
1a	d(Cg3…Cg3) ⁱ =3.608(2)
	d(Cg1Cg4) ⁱⁱ =4.2013(18)
1b	d(Cg3Cg3) ⁱⁱⁱ =3.549(2)
	d(Cg1Cg3) ^{iv} =4.284(2)
3 a	d(Cg3Cg3) ^v =3.5516(19)
	(Cg4Cg4) ^{vi} =3.9292(19)

ⁱ 2-x, 2-y, 2-z; ⁱⁱ 2-x, 1-y, 1-z; ⁱⁱⁱ x, -y, 1-z; ^{iv} 1-x, -y, -z; ^v-x, 1-y, 2-z; ^{vi}-x, 1-y, -z; Cg1 is the centroid of the ring W, O1, C1, N1 and N2, Cg3 is the centroid of the ring N3, C2–C5 and Cg4 is the centroid of the ring C8–C13 in **1a**, **1b** and **3a**.

Fig. S3 Powder X-ray diffraction patterns of 1a (a), 1b (b), 2a (c), 2b (d), 3a (e) and 3b (f).

NMR numbering scheme

Scheme S1The structural formula of H_2L^R with the NMR numbering scheme.

NMR spectroscopy

	H ₂ L ^{3OMe}		H ₂ L ^{4OMe}		H_2L^H	
Atom	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)
1	8.71	149.30	8.59	150.06	8.70	149.46
2	-	-	-	-	-	-
3	12.27	-	12.20	-	12.30	-
4	-	161.78	-	161.55	-	161.81
5	-	140.60	-	140.57	-	140.45
6	7.85	121.57	7.84	121.93	7.85	121.97
7	8.80	150.85	8.80	150.83	8.81	150.86
8	-	-	-	-	-	-
9	8.80		8.80	150.83	8.81	150.86
10	7.85	121.97	7.84	121.93	7.85	121.97
11	-	119.45	-	112.17	-	119.16
12	7.21	120.90	7.48	131.50	7.61	129.70
13	6.88	119.45	6.53	107.09	6.94	119.90
14	7.05	114.45	-	162.83	7.32	132.21
15	-	148.46	6.51	101.64	6.95	116.92
16	-	147.65	-	159.93	-	157.95
17	10.71	-	11.43	-	11.09	-
18	3.83	56.31	3.79	55.81	-	-

Table S5 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ chemical shifts (ppm) of H $_2\mathrm{L}^{30Me},$ H $_2\mathrm{L}^{40Me}$ and H $_2\mathrm{L}^{\mathrm{H}}$

	1a and 1b		2a and 2b		3a and 3b	
Atom	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹³ C)
1	9.01	159.64	8.91	159.03	9.04	159.62
2	-	-	-	-	-	-
3	-	-	-	-	-	-
4	-	167.30	-	165.98	-	167.28
5	-	137.51	-	137.62	-	137.50
6	7.91	122.05	7.88	121.92	7.97	122.06
7	8.80	151.19	8.77	151.12	8.79	151.18
8	-	-	-	-	-	-
9	8.80	151.19	8.77	151.12	8.79	151.18
10	7.91	122.05	7.88	121.92	7.91	122.06
11	-	121.18	-	114.32	-	120.94
12	7.36	126.18	7.70	136.51	7.80	135.35
13	7.08	122.39	6.74	110.42	7.14	122.55
14	7.36	118.58	-	166.62	7.64	136.53
15	-	149.75	6.66	104.54	7.06	120.06
16	-	148.40	-	160.91	-	158.76
17	-	-	-	-	-	-
18	3.85	56.48	3.86	56.48	-	-

Table S6¹H and ¹³C chemical shifts (ppm) of complexes 1a-3a and 1b -3b

* Signals belonging to EtOH and MeOH were also detected in ¹H NMR spectra in dmso solutions.

Fig S4 ¹H (a) and ¹³C NMR (b) spectra of complex 1a in DMSO- d_6

Fig S5 ¹H (a) and ¹³C NMR (b) spectra of complex 2a in DMSO- d_6

Fig S6 ¹H (a) and ¹³C NMR (b) spectra of complex 3a in DMSO- d_6

Table S7 Relevant catalytic results for the cyclooctene epoxidation by aqueous TBHP^{*a*} taken from Ref.12.

*H₂L^{3OMe} is 3-methoxysalicylaldehyde 4-hydroxybenzhydrazone

**H₂L^{40Me} is 4-methoxysalicylaldehyde 4-hydroxybenzhydrazone

Compound	Conversion ^b	TOF _{20min} ^c /h ⁻¹	TON^d
$[WO_2(L^{3OMe^*})(EtOH)]$	17	190	70
$[WO_2(L^{4OMe^*})(EtOH)]$	31	260	128

^{*a*} Reaction conditions: time, 5 h; temperature, 80 °C; [W]/cyclooctene/TBHP molar ratio: 0.25/100/200 for all compounds. ^{*b*} For cyclooctene, calculated after 5 h. ^{*c*}*n*(cyclooctene transformed)/*n*(catalyst)/time at 20 minutes. ^{*d*}*n*(cyclooctene transformed)/*n*(catalyst at 5 h).

Scheme S2 The structural formula of ligands H₂L taken from Ref.12.