Supporting information (SI)

TiO$_2$ sol-embedded in electroless Ni-P coating: A novel approach for ultra-sensitive sorbitol sensor
Pranee Rattanawaleedirojna,*, Kanokwan Saengkiettiyuta,
Yuttanant Boonyongmaneerata, Supin Sangsukb, Nadtinan Promphetc,
Nadnudda Rodthongkuma

aMetallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12,
Phayathai Road, Pathumwan, Bangkok 10330 Thailand

bSchool of Agricultural Resources, Chulalongkorn University, Soi Chula 64, Phayathai Road,
Pathumwan, Bangkok 10330 Thailand

cNanoscience and Technology Program, Graduate School, Chulalongkorn University, Bangkok
10330, Thailand

*Corresponding author e-mail: pranee.r@chula.ac.th (Rattanawaleedirojn, P.)
Fig S1 The configuration of an electrochemical cell used in this work.

Fig S2 An XRD spectrum of white TiO₂ powder after calcination at 600 °C for 1 hour (Rigaku, SmartLab, scan rate 10-80 degree, speed 1 degree/min, step 0.01 degree).
Fig. S3 SEM images of TiO₂ sol in Ni-P electroless bath.
Fig. S4 AFM images indicating the surface area \(S\) of (a) Ni-P-TiO\(_2\) (2 g/L of TiO\(_2\)) coating, (b) Ni-P/Ni-P (0 g/L of TiO\(_2\)) coating, (c) Ni-P/Ni-P-TiO\(_2\) (2 g/L of TiO\(_2\)) coating and (d) Ni-P/Ni-P-TiO\(_2\) (4 g/L of TiO\(_2\)) coating. (SPA-400 atomic force microscope (Seiko Instruments, Inc., Japan), using non-contact mode).
Fig. S5 An SEM image of Ni-P-TiO₂ (top) and the surface mapping indicates the distribution of Ti on the coated surface (bottom).
Fig. S6 Reproducibility of Ni-P/Ni-P-TiO$_2$ electrode for 10 consecutive detection of sorbitol.

Table S1 Stability of electrode for the detection of different compounds after storage for 7 days.

<table>
<thead>
<tr>
<th>Electrode</th>
<th>% of current signal compared to an original current signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methanol</td>
</tr>
<tr>
<td>Ni-P</td>
<td>85.1 ± 13</td>
</tr>
<tr>
<td>Ni-P-TiO$_2$ (2 g/L of TiO$_2$)</td>
<td>89.0 ± 3.9</td>
</tr>
<tr>
<td>Ni-P/Ni-P-TiO$_2$ (2 g/L of TiO$_2$)</td>
<td>91.5 ± 1.4</td>
</tr>
</tbody>
</table>