Electronic Supplementary Information

Title: Applanatumols A and B, Meroterpenoids with Unprecedented Skeletons from *Ganoderma applanatum*

Authors: Qi Luo a,b, Lei Di a, Xiao-Hua Yang a,c, and Yong-Xian Cheng*a

Addresses:

a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People’s Republic of China

b Graduate University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China

c Guangdong Pharmaceutical University, Guangzhou 510006, People’s Republic of China

Corresponding author contact details: *Tel/Fax: 86-871-65223048. E-mail: yxcheng@mail.kib.ac.cn (Y.-X.C.);*
Contents of Supporting Information

Figure S1. 1H NMR spectrum of 1 in acetone-d_6
Figure S2. 13C NMR and DEPT spectra of 1 in acetone-d_6
Figure S3. HSQC spectrum of 1 in acetone-d_6
Figure S4. HMBC spectrum of 1 in acetone-d_6
Figure S5. 1H-1H COSY spectrum of 1 in acetone-d_6
Figure S6. ROESY spectrum of 1 in acetone-d_6
Figure S7. HRESIMS spectrum of 1
Figure S8. 1H NMR spectrum of 2 in methanol-d_4
Figure S9. 13C NMR and DEPT spectra of 2 in methanol-d_4
Figure S10. HSQC spectrum of 2 in methanol-d_4
Figure S11. HMBC spectrum of 2 in methanol-d_4
Figure S12. 1H-1H COSY spectrum of 2 in methanol-d_4
Figure S13. ROESY spectrum of 2 in methanol-d_4
Figure S14. HREIMS spectrum of 2
Figure S15. 1H NMR spectrum of 2 in DMSO-d_6
Figure S16. 13C NMR spectrum of 2 in DMSO-d_6
Figure S17. HSQC spectrum of 2 in DMSO-d_6
Figure S18. HMBC spectrum of 2 in DMSO-d_6
Figure S19. ROESY spectrum of 2 in DMSO-d_6

X-ray crystal data of 1

MTT assay (Figure S22)
Figure S1. 1H NMR spectrum of 1 in acetone-d_6

Figure S2. 13C NMR and DEPT spectra of 1 in acetone-d_6
Figure S3. HSQC spectrum of 1 in acetone-d_6.
Figure S4. HMBC spectrum of 1 in acetone-d_6

Figure S5. 1H-1H COSY spectrum of 1 in acetone-d_6
Enlarged 1H-1H COSY spectrum of I (up-field region) in acetone-d_6
Figure S6. ROESY spectrum of \(\text{I} \) in acetone-\(d_6 \)

Enlarged ROESY spectrum of \(\text{I} \) (up-field region) in acetone-\(d_6 \)

--- End Of Report ---
Figure S7. HRESIMS spectrum of 1

Figure S8. 1H NMR spectrum of 2 in methanol-d_4

Figure S9. 13C NMR and DEPT spectra of 2 in methanol-d_4
Figure S10. HSQC spectrum of 2 in methanol-d_4
Figure S11. HMBC spectrum of 2 in methanol-d_4

Figure S12. 1H-1H COSY spectrum of 2 in methanol-d_4
Enlarged $^1\text{H}-^1\text{H}$ COSY spectrum of 2 (up-field region) in methanol-d_4

Figure S13. ROESY spectrum of 2 in methanol-d_4
Enlarged ROESY spectrum of 2 (up-field region) in methanol-d_4

Figure S14. HREIMS spectrum of 2

<table>
<thead>
<tr>
<th>Mass Calor. Mass</th>
<th>mA</th>
<th>PPM</th>
<th>DBE</th>
<th>1+FIT</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>366.1692</td>
<td>366.1103</td>
<td>-1.1</td>
<td>-3.6</td>
<td>8.0</td>
<td>C16 H18 O6</td>
</tr>
</tbody>
</table>
Figure S15. 1H NMR spectrum of 2 in DMSO-d_6

Figure S16. 13C NMR spectrum of 2 in DMSO-d_6

Figure S17. HSQC spectrum of 2 in DMSO-d_6
Figure S18. HMBC spectrum of 2 in DMSO-d_6.

Figure S19. ROESY spectrum of 2 in DMSO-d_6.
Figure S20. Enlarged ROESY spectrum of 2 (low-field region) in DMSO-d_6.

Figure S21. Enlarged ROESY spectrum of 2 (up-field region) in DMSO-d_6.
X-ray crystal data

Crystal data for 1: 2(C_{16}H_{16}O_{6})·H_{2}O, \(M = 626.59 \), monoclinic, \(a = 7.0996(2) \) Å, \(b = 17.4669(6) \) Å, \(c = 11.5838(4) \) Å, \(\alpha = 90.00^\circ \), \(\beta = 96.2500(10)^\circ \), \(\gamma = 90.00^\circ \), \(V = 1427.95(8) \) Å\(^3\), \(T = 100(2) \) K, space group \(P2_1 \), \(Z = 2 \), \(\mu(\text{CuK}\alpha) = 0.960 \) mm\(^{-1}\), 10353 reflections measured, 4483 independent reflections (\(R_{int} = 0.0495 \)). The final \(R_f \) values were 0.0530 (\(I > 2\sigma(I) \)). The final \(wR(F^2) \) values were 0.1452 (\(I > 2\sigma(I) \)). The final \(R_f \) values were 0.0539 (all data). The final \(wR(F^2) \) values were 0.1466 (all data). The goodness of fit on \(F^2 \) was 1.041. Flack parameter = -0.12(16). The Hooft parameter is 0.02(9) for 1801 Bijvoet pairs. The deposition number CCDC 1439639 for 1 can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

MTT assay

Figure S22. MTT assay of compounds 1, (+)-2 and (–)-2. NRK-52E cells were treated with indicated concentrations of the compounds for 24 h and detected by MTT assay.