Supporting Information

A rheological study of reverse vesicles formed by oleic acid and diethylenetriamine in cyclohexane

Ge Yang, Jianxi Zhao*
Institute of Colloid and Interface Chemistry, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016
Fig.S1 Steady-state viscosity curves for OA/DETA in cyclohexane at β (the molar ratio of DETA to OA) = 0.3 (a), 0.5 (b), 1 (c), 1.5 (d), and 2 (e) but different OA concentrations at 25 °C.

Fig.S2 Physical appearance (at β=0.5 (a), 1 (b), 1.5 (c), and 2 (d) with an OA concentration of 1 mol·L$^{-1}$).

Fig.S3 Oscillatory shear rheograms of the sample at OA concentration of 1 mol·L$^{-1}$ and β = 1, and the testing temperature was at 15 °C and 35 °C, respectively.
Fig. S4 Stress sweep rheograms for the sample at OA concentration of 1 mol·L$^{-1}$ and $\beta = 1$ but different temperatures.

Fig. S5 Physical appearance of the samples with 1 mol·L$^{-1}$ OA(1 mol·L$^{-1}$)/DETA ($\beta = 1$) at different molar ratios of water to OA, W_0.
Fig. S6 Polarizing micrographs of the samples (1 mol·L⁻¹ OA/1 mol·L⁻¹ DETA, $\beta = 1$) at $W_0 = 1, 6,$ and 10, from left to right.