Supporting Information

A modified two-step sequential deposition method for preparing perovskite CH3NH3PbI3 solar cells

Feng Shao, Li Xu, Yian Xie, Zhangliu Tian, Yaoming Wang, Peng Sheng

Deliang Wang and Fuqiang Huang

a Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China

b CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China

c State Key Laboratory of Advanced Transmission Technology, State Grid Smart Grid Research Institute

d State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China

* Corresponding Authors E-mail: huangfq@mail.sic.ac.cn.
Figure S1 XRD patterns of (a) SSE-PbI$_2$ films and (b) SC-PbI$_2$ films with different immersing time in MAI 2-propanol solution.
Figure S2 AFM images of (a) SC-SS-MAPI film, (b) SSE-SS-MAPI film, (c) SC-immers-MAPI film, and (d) SSE-immers-MAPI film.
Figure S3 The EQE spectrum (red) and the integrated photocurrent density (blue) of the best performed device fabricated with the SSE-SS-MAPI film expected to be generated under AM 1.5G irradiation.
Figure S4 Statistical average device parameters extracted from J-V curves as a function of four groups of devices prepared with four different kinds of MAPI films.

Group I: SSE-SS-MAPI; Group II: SC-immere-MAPI; Group III: SSE-immere-MAPI; Group IV: SC-SS-MAPI.
Figure S5 J-V curves of the best performed device fabricated with the SSE-SS-MAPI film with different scan rate.

Table S1 Summary of performance parameters of the best performed device fabricated with the SSE-SS-MAPI film with different scan direction at scan rate of 57.5 mV s-1.

<table>
<thead>
<tr>
<th>Scan direction</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA cm$^{-2}$)</th>
<th>FF (%)</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backward</td>
<td>1.032</td>
<td>19.85</td>
<td>69.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Forward</td>
<td>1.023</td>
<td>19.55</td>
<td>59.3</td>
<td>11.9</td>
</tr>
</tbody>
</table>