Supplementary Information:

Factors Affecting Oxygen Evolution through Water Oxidation on Polycrystalline Titanium Dioxide

Yuuya Nishimoto\(^a\), Yuichi Hasegawa\(^b\), Kenta Adachi\(^a\) and Suzuko Yamazaki\(^a^*\)

\(^a\) Division of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8512, Japan

\(^b\) Department of Biology and Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
Fig. S1 Emission spectrum of super-high-pressure Hg lamp through a U330 bandpass filter.

Fig. S2 Pore size distributions of (a) TiO$_2$-D and (b) TiO$_2$-ND calcined at 200–600°C for 2 hours.
Fig. S3 Zeta potential of TiO$_2$ nanocolloid as a function of pH value.

Fig. S4 XRD patterns of TiO$_2$-D calcined at (a) 200–500°C and (b) 600–900°C for 2 hours.
Fig. S5 XRD patterns of TiO$_2$-ND calcined at (a) 200–500°C and (b) 600–900°C for 2 hours.

Fig. S6 TG and DTA curves for (a) TiO$_2$-D and (b) TiO$_2$-ND calcined at 200°C for 2 hours.
Fig. S7 Time courses of O$_2$ evolution from 0.001–0.01 mol L$^{-1}$ AgNO$_3$ solution on TiO$_2$-ND calcined at 800°C for 2 hours under UV light irradiation.

Fig. S8 Crystalline phase composition of (a) TiO$_2$-D and (b) TiO$_2$-ND calcined 200–900°C for 10 hours. (Red: anatase, green: brookite, blue: rutile.)
Fig. S9 Relationships between D_{av} and O$_2$ evolution rate on TiO$_2$-D and TiO$_2$-ND calcined at 200–900°C for 2 or 10 hours.