Supporting Information

Highly poison-resistant Pt nanocrystals on 3D graphene toward efficient methanol oxidation

Lian Ying Zhanga,b,c, Wenlin Zhanga,b, Zhiliang Zhaoa, ZeLiua, Zhiqin Zhoub, and Chang Ming Lia,c,*

a Institute for Clean Energy \\ & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
b College of Horticulture and landscape Architecture, Southwest University, Chongqing, 400715, P. R. China
c Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou, 215011, P.R. China
d Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, P. R. China

Figure S1. SEM images of obtained Pt@3DGraphene materials with the same synthesis process except the reaction temperature and times. (a) 50\textdegree C 9h; (b) 150\textdegree C 9h; (c) 100\textdegree C 9h; (d) 100\textdegree C 4h; (e) 100\textdegree C 16h.
Figure S2. CO$_{ad}$ stripping voltammograms for (a) commercial Pt/C and (b) Pt@3DGraphene catalysts in 0.1 M HClO$_4$ solution at a scan rate of 50 mV s$^{-1}$.