Supplementary Information

A comparative binding mechanism between human serum albumin and α-1-acid glycoprotein with corilagin: Biophysical and computational approach

Daniel Pushparaju Yeggoni†, Aparna Rachamallu ‡, Rajagopal Subramanyam*†

†Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India

‡National Institute of Animal Biotechnology, Axis Clinicals Building, Miyapur, Hyderabad, 500049, India

*Corresponding author
Rajagopal Subramanyam
Tel: +91-40-23134572
Fax: +91-40-23010120
Email:srgsl@uohyd.ernet.in
Corilagin is showing anti-inflammatory properties against LPS induced mouse macrophages (RAW 264.7) in a dose-dependent manner. Cell growth was measured by the MTT assay. Insert shows the structure of Corilagin and the molecular formula (C\textsubscript{27}H\textsubscript{22}O\textsubscript{18}) and mass, 634.45 Da, respectively.
Figure S2.

Stern-Volmer plots of HSA-Corilagin complexes showing fluorescence quenching constant (Kq) and plot of F_0/F against [Q] for Corilagin.
Figure S4.

(A) The Root mean square deviation (nm) of unligand HSA and ligand HSA (HSA-corilagin) for 20ns. (B) The Time dependence of the radius of gyration (Rg) for the backbone atoms of unligand HSA and ligand HSA (HSA-corilagin) for 20ns.