Electronic Supplementary Information

Photoinduced energy and charge transfer in bis(triphenylamine)-BODIPY-C_{60} artificial photosynthetic system

Jian-Yong Liu*, Xue-Ni Hou, Ye Tian, Lizhi Jiang, Shuiquan Deng, Beate Röder and Eugeny A. Ermilov*

Contents

Fig. S1 Fluorescence spectra of triad 4 (a) and tetrad 6 (b) in polar DMF and nonpolar TOL upon excitation at 613 nm (BODIPY-part excitation). Optical density of the samples was adjusted to 0.1 at the BODIPY absorption maximum.

Fig. S2 Fit of the ΔOD signal at 550 nm of triad 4 solved in DMF (a) and TOL (b).

Fig. S3 Fit of the ΔOD signal at 550 nm of tetrad 6 solved in DMF (a) and TOL (b).

Fig. S4 Differential pulse voltammetry of tetrad 6 in deaerated DMF in the presence of 0.1 M [n-Bu₄N][ClO₄]. Scan rate = 20 mV s⁻¹.

Table S1 Vertical transition wavelengths λ_max (nm), transition energies ΔE (eV) and transition contributions calculated at TD-DFT B3LYP/(cc-pVDZ) level.

Fig. S5 Energy level diagram showing the different photophysical events of tetrad 6 in TOL.

Fig. S6 ¹H NMR spectrum of 3.

Fig. S7 ¹³C{¹H} NMR spectrum of 3.

Fig. S8 HRMS spectrum of 3.

Fig. S9 ¹H NMR spectrum of 4.

Fig. S10 ¹³C{¹H} NMR spectrum of 4.

Fig. S11 HRMS spectrum of 4.

Fig. S12 ¹H NMR spectrum of 5.
Fig. S13 13C\{1H}\ NMR spectrum of 5.

Fig. S14 HRMS spectrum of 5.

Fig. S15 1H NMR spectrum of 6.

Fig. S16 HRMS spectrum of 6.

Fig. S17 1H NMR spectrum of 9.

Fig. S18 MS spectrum of 9.
Fig. S1 Fluorescence spectra of triad 4 (a) and tetrad 6 (b) in polar DMF and nonpolar TOL upon excitation at 613 nm (BODIPY-part excitation). Optical density of the samples was adjusted to 0.1 at the BODIPY absorption maximum.
Fig. S2 Fit of the ΔOD signal at 550 nm of triad 4 solved in DMF (a) and TOL (b)
Fig. S3 Fit of the ΔOD signal at 550 nm of tetrad 6 solved in DMF (a) and TOL (b)
Fig. S4 Differential pulse voltammetry of tetrad 6 in deaerated DMF in the presence of 0.1 M $[n$-Bu$_4$N][ClO$_4$]. Scan rate = 20 mV s$^{-1}$
Table S1 Vertical transition wavelengths λ_{max} (nm), transition energies ΔE (eV) and transition contributions calculated at TD-DFT B3LYP/(cc-pVDZ) level

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max} (nm)</th>
<th>ΔE (eV)</th>
<th>Transitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>535</td>
<td>2.32</td>
<td>HOMO \rightarrow LUMO (100%)</td>
</tr>
<tr>
<td></td>
<td>387</td>
<td>3.20</td>
<td>HOMO-3 \rightarrow LUMO (63%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-1 \rightarrow LUMO (36%)</td>
</tr>
<tr>
<td>4</td>
<td>708</td>
<td>1.75</td>
<td>HOMO \rightarrow LUMO (99%)</td>
</tr>
<tr>
<td></td>
<td>561</td>
<td>2.21</td>
<td>HOMO-1 \rightarrow LUMO (96%)</td>
</tr>
<tr>
<td></td>
<td>405</td>
<td>3.06</td>
<td>HOMO \rightarrow LUMO+1 (71%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-3 \rightarrow LUMO (25%)</td>
</tr>
<tr>
<td></td>
<td>371</td>
<td>3.34</td>
<td>HOMO-3 \rightarrow LUMO (41%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO-4 \rightarrow LUMO (17%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HOMO \rightarrow LUMO+1 (16%)</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>3.51</td>
<td>HOMO \rightarrow LUMO+3 (38%)</td>
</tr>
<tr>
<td>6</td>
<td>712</td>
<td>1.74</td>
<td>HOMO \rightarrow LUMO+3 (92%)</td>
</tr>
<tr>
<td></td>
<td>568</td>
<td>2.18</td>
<td>HOMO-1 \rightarrow LUMO+3 (95%)</td>
</tr>
</tbody>
</table>
Fig. S5 Energy level diagram showing the different photophysical events of tetrad 6 in TOL
In all of the following spectra, the residual solvent signals are marked with asterisks

Fig. S6 1H NMR spectrum of 3
Fig. S7 13C-1H NMR spectrum of 3
Fig. S8 HRMS spectrum of 3
Fig. S9 1H NMR spectrum of 4
Fig. S10 13C-1H NMR spectrum of 4
Fig. S11 HRMS spectrum of 4
Fig. S12 1H NMR spectrum of 5
Fig. S13 13C{1H} NMR spectrum of 5
Fig. S14 HRMS spectrum of 5
Fig. S15 1H NMR spectrum of 6
Fig. S16 HRMS spectrum of 6
Fig. S17 1H NMR spectrum of 9
Fig. S18 MS spectrum of 9