Supporting information

Facile synthesis of highly porous N-doped CNTs/Fe₃C and its electrochemical properties

Yanzhong Wang⁵*, Guoxiang Zhang⁴, Guiwu Liu⁶, Wei Liu⁴, Huiyu Chen⁵*, Jinlong Yang⁴,⁶

⁴School of Materials Science and Engineering, North University of China, Taiyuan 030051, P.R. China
⁵School of Materials Science and Engineering, Jiangsu University, Zhenjiang 030051, P.R. China
⁶State Key Lab of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China

Correspondence author: Yanzhong Wang Tel/ Fax: +86-351-3557519. E-mail: wyzletter@nuc.edu.cn; Huiyu Chen E-mail: hychen09@sina.com
Fig. s1 XRD pattern of CNT/Fe₃C-6 without HCl treatment

Fig. s2 SEM images of (a) CNT/Fe₃C-2, (b) CNT/Fe₃C-4, (c) CNT/Fe₃C-6

Fig. s3. Nitrogen adsorption–desorption isotherms and specific surface area of N-doped CNTs/Fe₃C
Fig. S4 (a) CV curves at 100 mV s$^{-1}$, and (b) GCP curves of N-doped CNTs/Fe$_3$C at a current density of 1 A g$^{-1}$.