Supporting Information

Biocompatible Serine Functionalized Nanostructured Zirconia Based Biosensing Platform for Non-invasive Oral Cancer Detection

Suveen Kumar, Jai Gopal Sharma, Sagar Maji and Bansi Dhar Malhotra*

Nanobioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi 110042, India.

*Corresponding Author: bansi.malhotra@gmail.com
Scheme, Figures and Tables Captions

Scheme S1: Schematic diagram of functionalization of Zirconia with (a) APTES and (b) serine molecules.

Figure S1: FT-IR spectrum of the serine amino acid.

Figure S2: Electrochemical response of BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO immunoelectrodes with various pH of PBS buffer containing 5 mM [Fe(CN)$_6$]$_{3^-}$/4^-.

Figure S3: Cyclic voltammetry response of ITO, serine/nZrO$_2$/ITO, anti-CYFRA-21-1/serine/nZrO$_2$/ITO and BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO electrode.

Figure S4: Scan rate studies of serine/nZrO$_2$/ITO [Inset (a) magnitude of oxidation and reduction current generated as response of scan rate (mV/s), Inset (b) potential as function of scan rate] electrodes.

Figure S5: Scan rate studies of BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO [Inset (a) magnitude of oxidation and reduction current generated as a function of scan rate (mV/s), Inset (b) potential as function of scan rate] electrode.

Figure S6: Response time studies for binding of CYFRA-21-1 with BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO immunoelectrode.

Figure S7: Interferents studies of BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO immunoelectrode in presence of various molecules present in saliva sample of oral cancer patients.

Figure S8: Cumulative Effects of ions present in artificial saliva on electrochemical response study of BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO immunoelectrode.

Figure S9: Electrochemical response studies of five different BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO immunoelectrodes (fabricated in same condition) as function of 0.01 ng mL$^{-1}$ concentration of CYFRA-21-1.

Figure S10: Shelf life studies of BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO immunoelectrodes.

Table S1: Determination of CYFRA-21-1 concentration in saliva samples using BSA/anti-CYFRA-21-1/serine/nZrO$_2$/ITO immunoelectrodes
Scheme S1:
Figure S1:
Figure S2:
Figure S3:
Figure S4:
Figure S5:
Figure S6:
Figure S7:

![Bar chart showing current (mA) for different interferents: a = CYRRA-21-1, b = a + NaCM, c = b + Glu, d = c + KCl, e = d + CaCl₂, f = e + NaCl, g = f + CEA.](image-url)
Figure S8:
Figure S9:
Table S1:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>CYFRA-21-1 concentration determined using ELISA (in ng mL⁻¹)</th>
<th>Peak current (mA) obtained for standard CYFRA-21-1 samples</th>
<th>Peak current samples (mA) obtained with in Patients saliva samples</th>
<th>% RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>13.35</td>
<td>0.0458</td>
<td>0.0440</td>
<td>2.83</td>
</tr>
<tr>
<td>2.</td>
<td>14.15</td>
<td>0.0461</td>
<td>0.0480</td>
<td>2.86</td>
</tr>
<tr>
<td>3.</td>
<td>12.10</td>
<td>0.0454</td>
<td>0.0445</td>
<td>1.42</td>
</tr>
<tr>
<td>4.</td>
<td>14.55</td>
<td>0.0461</td>
<td>0.0490</td>
<td>4.31</td>
</tr>
<tr>
<td>5.</td>
<td>12.50</td>
<td>0.0456</td>
<td>0.0400</td>
<td>9.25</td>
</tr>
<tr>
<td>6.</td>
<td>13.50</td>
<td>0.0458</td>
<td>0.0420</td>
<td>6.12</td>
</tr>
<tr>
<td>7.</td>
<td>15.55</td>
<td>0.0464</td>
<td>0.0491</td>
<td>4.00</td>
</tr>
</tbody>
</table>