DFT Study of Ethanol Dehydration Catalysed by Hematite

Juliana F. Lopes^a, Juliana C. M. Silva^b, Maurício T.M. Cruz^c, José Walkimar de M. Carneiro^d, Wagner B. De Almeida^{d,*}

^a Laboratório de Química Computacional (LaQC), Instituto de Física e Química,Universidade Federal de Itajubá (UNIFEI), Av. BPS, 1303 Pinheirinho, Itajubá, MG, 37500-903, Brazil.

^b Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil.

^e Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, Maracanã, Rio de Janeiro, RJ, 20550-900, Brazil.

^d Laboratório de Química Computacional (LQC), Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense (UFF), Campus do Valonguinho, Centro, Niterói, RJ, CEP: 24020-141, Brazil

SUPPLEMENTARY MATERIAL

Table S1. MP2/6-31G(d,p) geometrical parameters^a for the molecular species present in the gas-phase ethanol dehydration process, according to Scheme 1 (See Figure 5b for atom numbering).

Bond/Angle	Ethanol	Transition State	Product
C1-C2 (Å)	1.52 (1.53) ^a	1.42 (1.42) ^a	1.34 (1.33) ^a
C1-O7 (Å)	1.43 (1.43) ^a	1.82 (1.86) ^a	3.44 (3.44) ^a
C2-H9 (Å)	1.09 (1.09) ^a	1.46 (1.44) ^a	2.51 (2.51) ^a
H9-C2-C1 (°)	110.1 (110.4) ^a	72.6 (73.8) ^a	74.6 (74.6) ^a
H3-C2-H6 (°)	107.9 (107.6) ^a	116.0 (115.5) ^a	117.0 (116.7) ^a
C2-C1-O7 (°)	112.4 (112.7) ^a	95.0 (94.0) ^a	78.7 (78.8) ^a
C2-C1-O7-H8 (°)	62.8 (62.5) ^a	103.8 (105.6) ^a	94.5 (94.6) ^a

^a The B3LYP/6-31G(d,p) values a given in parenthesis.

Table S2. *Ab initio* gas-phase relative energies and thermodynamic properties (p = 1 atm; T = 298 K) for molecular species present in the ethanol dehydration process (Scheme 1). All values in kcal mol⁻¹.

Gas Phase	Ethanol	TS structure			Ethylene + Water			
		$\Delta \mathbf{E}^{\ddagger}$	$\Delta \mathbf{H}^{\ddagger}$	$\Delta \mathbf{G}^{\ddagger}$	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	
B3LYP/6-31G(d,p)	0.0	69.6	64.5	69.7	18.2	16.4	10.6	
B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p)	0.0	67.7	62.6	67.8	13.3	11.5	5.7	
B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d,p)	0.0	67.6	62.5	67.7	10.7	8.9	3.1	
B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d,p)	0.0	67.5	62.4	67.6	10.8	9.0	3.2	
B3LYP/aug-cc-pVTZ//B3LYP/6-31G(d,p)	0.0	67.3	62.2	67.4	10.7	8.9	3.1	
PBE1PBE/6-31G(d,p)//B3LYP/6-31G(d,p)	0.0	70.9	-	-	21.9	-	-	
PBE1PBE/6-31++G(d,p)//B3LYP/6-31G(d,p)	0.0	69.2	-	-	17.6	-	- [
PBE1PBE/6-311++G(2d,2p)//B3LYP/6-31G(d,p)	0.0	69.1	-	-	15.5	-	-	
CAM-B3LYP/6-31G(d,p)//B3LYP/6-31G(d,p)	0.0	72.6			21.2			
CAM-B3LYP/6-31++G(d,p)//B3LYP/6-31G(d,p)	0.0	70.8			16.1			
CAM-B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d,p)	0.0	70.6			13.5			
M062x/6-31G(d,p)//B3LYP/6-31G(d,p)	0.0	73.7	-	-	20.4	-	-	
M062x/6-31++G(d,p)//B3LYP/6-31G(d,p)	0.0	72.0	-	-	16.5	-	-	
M062x/6-311++G(2d,2p)//B3LYP/6-31G(d,p)	0.0	71.9	-	-	14.2	-	-	
MP2/6-31G(d,p)	0.0	74.8	69.5	64.7	17.2	14.9	9.2	
-		$(75.0)^{a}$	$(69.8)^{a}$	$(75.0)^{a}$	$(17.2)^{a}$	$(15.3)^{a}$	$(9.6)^{a}$	
MP2/6-31++G(d,p)//MP2/6-31G(d,p)	0.0	71.8	66.5	61.7	13.0	10.7	5.0	
MP2/6-311++G(2d,2p)//MP2/6-31G(d,p)	0.0	70.1	64.8	60.0	11.0	8.7	3.0	
MP4(SDTQ)/6-31G(d,p)//MP2/6-31G(d,p)	0.0	85.8	80.5	75.7	16.42	14.1	8.4	
MP4(SDTQ)/6-31++G(d,p)//MP2/6-31G(d,p)	0.0	72.3	67.0	62.2	12.7	10.4	4.7	
MP4(SDTQ)/6-311++G(2d,2p)//MP2/6-31G(d,p)	0.0	70.3	65.0	60.2	10.7	8.4	2.7	
CCSD(T)/6-31G(d,p)//MP2/6-31G(d,p)	0.0	75.9	70.6	65.8	15.4	13.1	7.4	
CCSD(T)/6-31++G(d,p)//MP2/6-31G(d,p)	0.0	73.3	68.0	66.8	11.8	9.8	4.1	
CCSD(T)/6-311++G(2d2,p)//MP2/6-31G(d,p)	0.0	71.8	66.5	61.7	10.2	7.9	2.2	

^a MP2/6-31G(d,p)//B3LYP/6-31G(d,p) value.

Temperature	ΔG°	<u>ΔH°</u>	TΔS	ΔG^{\ddagger}	ΔH^{\ddagger}	$T\Delta S^{\ddagger}$	l_{r} (a^{-1})
(K)	(kcal mol ⁻¹)	K (S ⁻)					
300	3.3	9.1	5.8	65.1	64.9	-0.17	2.3×10 ⁻³⁵
350	2.3	9.4	7.1	65.1	65.0	-0.16	1.6×10 ⁻²⁸
400	1.3	9.6	8.4	65.2	65.0	-0.12	2.1×10 ⁻²³
450	0.2	9.8	9.6	65.2	65.1	-0.08	2.1×10 ⁻¹⁹
500	-0.9	10.1	10.9	65.2	65.1	-0.03	3.4×10 ⁻¹⁶
550	-2.0	10.3	12.2	65.2	65.2	0.03	1.5×10 ⁻¹³
600	-3.1	10.4	13.5	65.2	65.2	0.08	2.3×10 ⁻¹¹
650	-4.2	10.6	14.8	65.2	65.3	0.13	1.7×10 ⁻⁹
700	-5.4	10.7	16.0	65.1	65.3	0.18	6.7×10 ⁻⁸
750	-6.5	10.8	17.3	65.1	65.4	0.23	1.6×10 ⁻⁶
800	-7.7	10.9	18.6	65.1	65.4	0.27	2.7×10 ⁻⁵
850	-8.8	11.0	19.8	65.1	65.4	0.30	3.2×10 ⁻⁴
900	-10.0	11.0	21.0	65.1	65.4	0.33	2.9×10 ⁻³
950	-11.2	11.1	22.3	65.1	65.4	0.35	2.1×10 ⁻²
1000	-12.3	11.2	23.5	65.0	65.4	0.37	1.3×10 ⁻¹
1050	-13.5	11.2	24.7	65.0	65.4	0.38	0.64
1100	-14.7	11.2	25.9	65.0	65.4	0.39	2.8
1150	-15.9	11.3	27.1	65.0	65.4	0.39	10.7
1200	-17.0	11.3	28.3	65.0	65.4	0.38	36.7

Table S3. MP2/6-311++G(2d,2p)//B3LYP/6-31G(d,p) thermodynamic properties as function of temperature for the gas-phase ethanol dehydration process according to Scheme 1.

Spin	UB3LYP/	UB3LYP/	UMP2/	UMP2/	UMP4(SDTQ)/	UCCSD(T)/
Multiplicity	6-31(d,p)	6-311++G(d,p)//	6-31G(d,p)	6-311++G(2d,2p)//	6-311++G(2d,2p)//	6-311++G(2d,2p)//
(2S+1)		UB3LYP/		UMP2/	U MP2/	U MP2/
(20+1)		6-31(d,p)		6-31G(d,p)	6-31G(d,p)	6-31G(d,p)
1	91.1	91.9	-	-	-	-
3	66.2	87.5	-	-	-	-
5	24.4	22.2	88.8	113.4	113.9	-
7	0	47.6	17.9	22.1	29.4	19.3
9	38.3	88.4	23.7	31.0	31.0	22.4
11	5.2	0	0	0	0	0
13	54.3	48.9	140.9	147.9	-	-
15	167.2	162.2	157.4	171.3	-	-
17	308.6	306.6	302.5	332.3	-	-

Table S4. Relative energies (kcal mol^{-1}) for Fe₂O₃ linear neutral monomer.

structure

Figure S1. MP2/6-31G(d,p) IRC for the gas-phase ethanol dehydration process according to Scheme 1 (a) and displacement vectors of the transition state imaginary frequency mode (2080i cm⁻¹; MP2/6-31G(d,p) value) (b).

Figure S2. UB3LYP/6-31G(d,p) optimized undecet spin state catalyst structures. (a) $Fe_{12}O_{18}$ planar (Reactant) (b) $Fe_{10}O_{15}$ non-planar (Reactant)

- (c) $Fe_{12}O_{18}$ planar (TS)
- (a) $Fe_{12}O_{18}$ planar (Product)
- (b) $Fe_{10}O_{15}$ non-planar (Reactant) (d) $Fe_{10}O_{15}$ non-planar (TS)
- (b) Fe₁₀O₁₅ non-planar (Product)

Figure S3. A comparison between B3LYP/6-311++G(2d,2p)//B3LYP/6-31G(d,p) rate constant (lnk(T)) profiles for the ethanol dehydration gas phase and catalytic (Fe₁₀O₁₅ singlet state) process, using $\Delta E^{\#}$, $\Delta H^{\#}$ and $\Delta G^{\#}$ values in equation (2) for the evaluation of k(T).