Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys

Lan-Yue Cui, a, b Rong-Chang Zeng, a, b † Shuo-Qi Li, a, b † Fen Zhang a, b and En-Hou Han c

ESI Figure 1. (a) Cross-sectional image of the SiO2/(PVP/PAA)5 film and (b) the corresponding elemental mapping of the Si element.

ESI Figure 2. (a) 3D optical profilometry images of nanoscratches made on the SiO2/(PVP/PAA)5 film; (b) relationships between depth/load and sliding displacement for the SiO2/(PVP/PAA)5 film.

a. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
b. State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao, 266590, China
c. National Engineering Centre for Corrosion Control, Institute of Metals Research, Chinese Academy of Sciences, Shenyang, 110016, China

† Corresponding author: E-mail address: rczeng@foxmail.com (R. C. Zeng); lishuoqi@sdust.edu.cn (S. Q. Li); Tel.: +86 0532 86051385; Fax: +86 0532 86057122

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x
ESI Figure 3. I_{corr} of the similar coatings and their substrates compared with the SiO$_2$/(PVP/PAA)$_5$ film.

ESI Figure 4. Schematic illustrations of the deposition mechanisms of the (a) (PVP/PAA)$_5$ and (b) SiO$_2$/(PVP/PAA)$_5$ coatings on the AZ31 substrate.

ESI Figure 5. Schematic illustration of the corrosion mechanism of the SiO$_2$/(PVP/PAA)$_5$ film on the AZ31 substrate in HBSS.