Electronic Supplementary Information

Experimental investigation on the water stability of amino-modified indium metal–organic framework

Cao Yang, Jianhua Cheng, *ab Yuancai Chena and Yongyou Hua

aThe Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China. E-mail: jhcheng@scut.edu.cn; Fax: +86 20 38743651; Tel: +86 20 38743625

bSouth China Institute of Collaborative Innovation, Dongguan 523808, China.
Regents

Terephthalic acid (H$_2$BDC), 2-aminoterephthalic acid (BDC-NH$_2$) and indium nitrate hydrate (In(NO$_3$)$_3$·xH$_2$O) were obtained from Alfa Aesar China Co., Ltd. (Tianjin, China). N’N-dimethylformamide (DMF) and methanol were supplied by Guangzhou Chemicals Co. Ltd. (Guangzhou, China). All reagents were analytical grade and used without further purification.

Synthesis

Preparation of MIL-68(In) and MIL-68(In)-NH$_2$

MIL-68(In) was synthesized through a solvothermal method reported by Ferey’s group1. The mixture of In(NO$_3$)$_3$·xH$_2$O (1.05 mmol), H$_2$BDC (1.20 mmol) and DMF (5.00 mL) was placed in a 25 mL Teflon liner. After stirred for 30 min, the liner was sealed in a stainless steel autoclave and heated at 100°C for 48 h. After natural cooling, white powder was collected and washed with DMF. Then, the product was filtered and dried under vacuum at 100°C for 12h. The resulting sample was then kept in a desiccator.

MIL-68(In)-NH$_2$ was prepared solvothermally using reported method2. Typically, In(NO$_3$)$_3$·xH$_2$O (3.84 mmol) and BDC-NH$_2$ (1.29 mmol) were mixed with DMF (12.4 mL) in a 25 mL Teflon liner. After stirred for 30 min, the liner was sealed in a stainless steel autoclave and heated at
125°C for 5 h. After natural cooling, light yellow powder was collected, washed with DMF and immersed in fresh methanol for three days. The methanol was changed once a day. Finally, the sample was filtered and dried under vacuum at 100°C for 12h. The resulting sample was then kept in a desiccator.

Characterization

Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 Advance X-ray diffractometer operated at 40 kV and 40 mA with Cu Kα radiation. N₂ adsorption-desorption isotherms of the samples at 77 K were measured with a Micromeritics ASAP 2020 instrument. The BET surface areas can be obtained by analyzing the N₂ adsorption-desorption isotherms. Scanning electron microscope (SEM) was performed on a MERLIN Compact instrument.

Evaluation of water stability of MIL-68(In)-NH₂

1. *The effect of water molecule on the MIL-68(In)-NH₂ synthesis*

In(NO₃)₃•xH₂O (3.84mmol) and BDC-NH₂ (1.29mmol) were mixed with DMF (12.4mL) until complete dissolution of the solids. Then, 12.9% and 18.2% water (by mass) were separately added in the precursor solutions. The resulting mixtures were subsequently stirred followed by the same synthesis procedure as for MIL-68(In)-NH₂. The structure and
morphology evolutions of the resulting products were monitored by XRD, SEM and BET, respectively.

2. *Tolerance study of the MIL-68(In)-NH₂ and MIL-68(In) crystal in acidic solutions*

The acid-tolerance of MIL-68(In)-NH₂ and MIL-68(In) was tested in acidic solutions at different pH. The solution pH was adjusted to 1, 2, 3 and 5 with 0.1M and 1M HCl, respectively. The MIL-68(In)-NH₂ and MIL-68(In) samples were immersed in acidic solutions for 2 h at a MIL-68(In)-NH₂ or MIL-68(In)/solution weight ratio of 0.04:100. The samples were collected and then subjected to XRD and BET analysis.

3. *Hydrothermal tests for MIL-68(In)-NH₂ and MIL-68(In)*

The hydrothermal tests for the MIL-68(In)-NH₂ and MIL-68(In) crystals were performed in hot water (80 °C) for 24 h. The crystal concentration (\(W_{\text{MOF}}/(W_{\text{MOF}}+W_{\text{water}})\)) was 0.060 wt%. Following hydrothermal test, the samples were collected and then analyzed by XRD, BET and SEM, respectively.

4. *Comparative study of stability of MIL-68(In)-NH₂ and MIL-68(In) after exposure to water*

A given amount of MIL-68(In)-NH₂ and MIL-68(In) powders was separately immersed in room-temperature water at a MOF/solution weight ratio of 0.04:100. The samples were collected at different durations and then analyzed by XRD and BET, respectively.
Fig. S1 N$_2$ adsorption-desorption isotherm of the MIL-68(In)-NH$_2$ sample after hydrothermal test in 80°C water for 12 h.

Fig. S2 The structure of MIL-68(In).

Reference: