Electronic Supplementary Information (ESI) for RSC Advances

This journal is © The Royal Society of Chemistry 2016

Xylene sensing performance of WO$_3$ decorated anatase TiO$_2$ nanoparticles as a sensing material for gas sensor

Nan Chena, Dongyang Dengb, Yuxiu Lib, Xinxin Xingb, Xu Liub, Xuechun Xiaob,c, Yude Wanga,c,*

a Department of Physics, Yunnan University, 650091 Kunming, People’s Republic of China.

b School of Materials Science and Engineering, Yunnan University, 650091 Kunming, People’s Republic of China.

c Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091 Kunming, People’s Republic of China

Fax: +86-871-65153832; Tel: +86-871-65031124; E-mail: ydwang@ynu.edu.cn.
Figure S1 (a) sketch of the structure of the gas sensor, (b) The WS-30A system (Weisheng Instruments Co., Zhengzhou, China), and (c) basic working principle of gas sensor test.
Figure S2 Nitrogen adsorption-desorption isotherms of as-synthesized 7.5 mol% WO$_3$ decorated TiO$_2$ nanoparticles, and the inset is the corresponding pore size distributions.
Figure S3 Nitrogen adsorption-desorption isotherms of as-synthesized 20.0 mol% WO$_3$ decorated TiO$_2$ nanoparticles, and the inset is the corresponding pore size distributions.
Figure S4 (a) XPS survey spectrum of the 7.5 mol% WO$_3$ decorated TiO$_2$ nanoparticles, (b) high-resolution XPS spectrum of O 1s, (c) Ti 2p, and (d) W 4f for 7.5 mol% WO$_3$ decorated TiO$_2$ nanoparticles.
Figure S5 (a) XPS survey spectrum of the 20.0 mol% WO$_3$ decorated TiO$_2$ nanoparticles, (b) high-resolution XPS spectrum of O 1s, (c) Ti 2p, and (d) W 4f for 20.0 mol% WO$_3$ decorated TiO$_2$ nanoparticles.