Low viscosity-PLGA scaffolds by compressed CO² foaming for growth factors delivery

L. Diaz-Gomez\(^a\), F. Yang\(^b\), J.A. Jansen\(^b\), A. Concheiro\(^a\), C. Alvarez-Lorenzo\(^a\)*, C.A. García-González\(^a\)*

\(^a\) Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.

\(^b\) Department of Biomaterials, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands.

*Corresponding authors: carmen.alvarez.lorenzo@usc.es; phone: +34 881 815239; fax: +34 981 547148; carlos.garcia@usc.es; phone: +34 881 815252; fax: +34 981 547148.

§The work described in this paper is the subject of patent application P201531087 filed by Universidade de Santiago de Compostela.
Figure S1. Protein distribution within scaffolds processed by compressed CO$_2$ foaming as observed under confocal microscopy of cross sections of PCGL:Lys-FITC (left) and PCGL:StO:Lys-FITC (right). Scale bar: 300 µm.
Figure S2. SEM micrographs of the scaffolds cultured in PBS for 60 days (A: PCGL; B: PCGL-IPRP; C: PCGL-StO; D: PCGL-StO-IPRP, E: PCGL-StL; and F: PCGL-StL-IPRP).
Figure S3. Storage (G', solid symbols) and loss (G'', open symbols) moduli of PCGL scaffolds at 37 °C.
Figure S4. Dependence of storage (G’, solid symbols) and loss (G’’, open symbols) moduli of PCGL scaffolds as a function of temperature, for 0.5% strain.