Supporting Information

Insights into the effect of Pt dopant into Cu(110)/H₂O for methanol decomposition: A density functional theory study

Yong-Chao Zhang, Zhi-Jun Zuo, Rui-Peng Ren* and Yong-Kang Lv*

Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi China

*Corresponding author. Fax: +86 351 6010386. E-mail address: lykang@tyut.edu.cn (Y.-K. Lv); renruipeng888@126.com (R.-P. Ren).

Fig.S1 The average electrostatic potential through the slab of the Z axis direction, (a) 9Pt-Cu(110)/H₂O, (b) 3Pt-Cu(110)/H₂O and (c) 1Pt-Cu(110)/H₂O.
Fig.S2 Schematic representation of the C-H bond breaking route of CHOH for the methanol decomposition on 9Pt-Cu(110)/H₂O surface. Cu, Pt, C, O and H atoms are shown in brown, blue, gray, red and white spheres, respectively.
Fig.S3 Schematic representation of the O-H bond breaking route for the methanol decomposition on 9Pt-Cu(110)/H₂O surface. See Fig.S2 for color coding.
Fig.S4 Schematic representation of the C-H bond breaking route for the methanol decomposition on 3Pt-Cu(110)/H$_2$O surface. See Fig.S2 for color coding.
Fig.S5 Schematic representation of the C-H bond breaking route of CHOH for the methanol decomposition on 3Pt-Cu(110)/H₂O surface. See Fig.S2 for color coding.
Fig.S6 Schematic representation of the C-H bond breaking route for the methanol decomposition on 1Pt-Cu(110)/H₂O surface. See Fig.S2 for color coding.