Structural characterization of TiO$_2$ arrays

X-ray diffraction (XRD) patterns were recorded at room temperature using a Rigaku D/MAX 2000 PC diffractometer with Cu Kα radiation (λ=1.5406Å). Scanning electron microscopy (SEM) images were obtained on a HITACHI S4800 microscope. Detailed structural properties of the obtained product were investigated by transmission electron microscopy (TEM, JEM-2010, JEOL).

Electrochemical measurements

The electrochemical performance of the TiO$_2$ nanorods array on Cu substrate was studied by Swagelok-type two-electrode assembled in an Ar-filled glove box (MB-10-G with TP170b/mono, MBRAUN) using lithium foil as anode, 1M LiPF$_6$/EC+DEC (1:1 in volume) as electrolyte, and Celgard 2300 membrane as separator. For these experiments, no additives such as binder agent and conductive agent were used. The galvanostatic charge/discharge cycle was performed using a battery test system (NEWARE BTS-610, Neware Technology Co., Ltd) at a constant current density, with cut off voltage of 2.6–1.0V (vs. Li/Li$^+$). A three-electrode electrochemical cell was employed for cyclic voltammetry measurements in which Li metal disk served as the reference and counter electrodes. Cyclic voltammetric (CV) tests were conducted between 1.0-2.6V with scan rate of 0.1, 0.5 and 1.0 mV·s$^{-1}$ (IM6ex, Zahner elektrik).
S1: In order to confirm that the nanorods contain Ti and O without any chlorides, which probably influence the electrochemical test, energy-dispersive X-ray spectrometry (EDS) analysis is introduced. The peaks of Si, C and Cu are donated by the TEM equipment and copper grid, respectively.

![EDS result of the as-cleaned nanorods array](image)

Figure S1. EDS result of the as-cleaned nanorods array

S2: Urea here plays an important role for the growth of nanorods. (1) Slow down the hydrolysis of Ti$^{3+}$ and afford simultaneously hydrolysis–condensation by olation of the Ti$^{3+}$, which can control the nucleation progress.$^{51-54}$ (2) Tailoring the pH value of the reaction solution preventing the corrosion of Cu substrate by high concentration of Cl$^{-}$.

![SEM image](image)

Figure S2 SEM image of (a) sample prepared with absence of urea (b) sample prepared with addition of 0.05g urea, (c) sample prepared with addition of 0.1 g urea, and (d) sample prepared with addition of 0.3 g urea
It is well known that urea decomposes in hot water and produces ammonia and carbon
dioxide. The reaction is as follows:

\[(\text{NH}_2)_2\text{CO} + 3\text{H}_2\text{O} \rightarrow 2\text{NH}_3 \cdot \text{H}_2\text{O} + \text{CO}_2\] (1)

\[\text{NH}_3 \cdot \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^-\] (2)

And the chemical process of the formation of TiO$_2$ is:

\[\text{Ti}^{3+} + \text{H}_2\text{O} \rightarrow \text{TiOH}^{2+} + \text{H}^+\] (3)

\[\text{TiOH}^{2+} + \text{O}_2 \rightarrow \text{Ti(IV) oxo species} + \text{O}_2 \rightarrow \text{TiO}_2\] (4)

The hydrolysis of Ti$^{3+}$ was slow down firstly because of the coordination between Ti$^{3+}$ and
ammonia ligands, resulting in the change of composition or coordination structure of the
growing unit, and induced the heterogeneous nucleation on the Cu substrates.$^\text{S1}$ Then, with the
slow generation of OH\,-, [Ti(OH)$_2$(Cl)$_2$(OH)$_2$]10 complex was formed,$^\text{S2}$ leading the growth of
rutile TiO$_2$ by oxolation (the formation of oxo bridges by the elimination of water).$^\text{S3-S4}$
Furthermore, it is widely known that copper can be corroded badly by Cl\,-, especially with the
presence of H$^+$, and the high pH value is benefit of preventing copper corrosion,$^\text{S5-S7}$ which
was achieved by the hydrolysis of urea.

Figure S2a shows TiO$_2$ nanoparticles are produced with observation of only a few nanorods
in the absence of urea, and the copper substrate is badly corroded. With the addition of urea,
dandelion-like structures assembled by nanorods generate (Figure S2b). As is shown of Figure
S2d, uniform TiO$_2$ nanorods array was prepared when the content of urea is up to 0.3g, and
the corrosion of Cu substrate is prevented.

Supporting References

(S1) Y. B. Zhang, X. J. Feng, L. Jiang, *Sci China Ser B-Chem.*, 2007, **50**, 175-178

