Supporting Information

Ordered mesoporous crystalline titania with high thermal stability from comb-like liquid crystal block copolymers

Shubo Cao, Yongbin Zhao, Ting Qu, Pingping Wang, Song Guan, Yawei Xu, Fan Rao, Yayuan Li, Aihua Chen, *Tomokazu Iyoda

*E-mail: chenaihua@buaa.edu.cn

a School of Materials Science and Engineering, Beihang University, Beijing 100191, P.R. China

b National Institute of Clean and Low Carbon Energy, Beijing 102209, P.R. China

c Division of Integrated Molecular Engineering, Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midoriku, Yokohama, Kanagawa 226-8503 Japan
Preparation of Amphiphilic PEO-b-PMA(Az) Diblock Copolymer.

The amphiphilic PEO-b-PMA(Az) diblock copolymers were prepared by atom transfer radical polymerization (ATRP) method reported elsewhere previously. The synthesis route involved three steps, the preparation of macroinitiator PEO-Br, the preparation of azobezene monomer and the subsequent polymerization of azobezene monomer initiated by PEO-Br. In the first step, monomethoxy PEO-5000 (10 g) was dissolved in THF (30 ml). Then 0.30 g triethylamine were added to the solution, after cooled to 0 °C by ice-water bath, a solution of 0.56 g 2-bromo-2-methylpropionylbromide in 10 ml of dry THF was added dropwise under stirring for 1 h. And then the mixture was stirred at room temperature for 24 h. After the mixture was filtered, half of the solvent was evaporated, and the PEO-Br was precipitated into cold ether. After dissolution in methanol, the solution was stored in refrigerator to recrystallize the product. In the second step, 20 g 4-butylaniline was added into the round flask (500 ml), and subsequently 48.7 g concentrated HCl (37 wt %) was added. After ultrasonic, the mixture was cooled to below 5 °C. 30 ml solution containing 9.25 g sodium nitrite (NaNO₂) was added dropwise under stirring for 30 min to obtain the diazonium salts. 7.9 g phenol was dissolved in 75 ml solution containing 12.96 g potassium hydroxide (KOH). Once completely dissolved, the obtained diazonium salts were added dropwise and the pH value was kept about 9. After reaction for 1 h, the pH value was adjusted to 6 ~ 7 by using HCl. Claybank precipitations (denoted as P1) were obtained. 8.6 g P1, 8.5 g 11-bromoundecanol, 14.22 g potassium carbonate (K₂CO₃), 0.39 g potassium iodide (KI) and 150 ml acetone were successively added.
into the 250 ml round flask, and then the mixture was refluxed at 75 °C for 12 h. After rinsing and drying, the product (denoted as P2) was obtained. 10 g P2 and 2.97 g triethylamine were added into 150 ml THF in ice-water bath, and then 3.07 g methacryloyl chloride was added dropwise under stirring for 1 h. Finally, the mixture was stirred at room temperature for 12 h. After filtering, rinsing and dry, azobezene monomers (denoted as MA(Az)) were obtained. In the third step, 0.5 g PEO-Br, 1.5 g MA(Az), 4 ml chlorobenzene, 26.36 µl HMTETA and 9.95 mg CuCl were added to an ampoules bottle. The bottle, containing reactants, was fully degassed with three freeze-pump-thaw cycles and sealed under vacuum. It was subsequently immersed in a thermostated oil bath at 80 °C under stirring to allow polymerization of MA(Az) for 20 h. The solution was passed through a neutral Al₂O₃ column with THF as eluent to remove the catalyst. The yellow filtrate was concentrated under reduced pressure and reprecipitated twice into acidic methanol. The yellow polymer (PEO-b-PMA(Az)) was collected by filtration and dried under vacuum.
Fig. S1 Typical 1H NMR spectrum of block copolymer PEO-b-PMA(Az) in CDCl$_3$.

Fig. S2 GPC trace of PEO-Br and the lab-made diblock copolymer PEO-b-PMA(Az) using THF as an eluent.
Fig. S3 FT-IR spectra of PEO, PEO-Br and PEO-b-PMA(Az).

Compared with PEO, a carbonyl stretch occurs at 1740 cm$^{-1}$ in PEO-Br. After the polymerization of MA(Az), the adsorption peak of PEO-b-PMA(Az) at 1740 cm$^{-1}$ increases, indicating the relative ratio of carbonyl obviously increases, due to the ester bond in PMA(Az). Due to the azobenzene in PMA(Az), the stretches of benzene skeleton at 1600 cm$^{-1}$ and 1500 cm$^{-1}$ occurs. Both indicate the presence of PMA(Az) block in the PEO-b-PMA(Az).

Fig. S4 DSC curve of PEO-b-PMA(Az) on the second heating process.

The sharp peak at 40 °C is the melting peak of PEO. Two endothermic transitions at 62 and 113 °C are observed, which are attributed to LC transitions.
Fig. S5 TEM images of MT-800N.

Fig. S6 TEM images of the as-made sample directly calcined at 600 °C in air (denoted as MT-600A).
Fig. S7 Nitrogen adsorption-desorption isotherm of MT-350N.

Fig. S8 TG curves of PEO-\textit{b}-PMA(Az) in nitrogen atmosphere.
Fig. S9 SAXRD patterns of mesoporous titania calcined at 450 °C in air.

Fig. S10 HRTEM images of MT-600N-450A
Table S1. Physicochemical properties of mesoporous titania materials.

<table>
<thead>
<tr>
<th></th>
<th>BET surface area (m2/g)</th>
<th>Pore volume (cm3/g)</th>
<th>Pore size (nm)</th>
<th>Crystallite sizea (nm)</th>
<th>d_{100}b (nm)</th>
<th>ac (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MT-350N</td>
<td>21</td>
<td>-</td>
<td>-</td>
<td>7.0</td>
<td>19.6</td>
<td>17.0</td>
</tr>
<tr>
<td>MT-600N</td>
<td>165</td>
<td>0.13</td>
<td>2.55, 4.73</td>
<td>9.0</td>
<td>16.8</td>
<td>14.5</td>
</tr>
<tr>
<td>MT-700N</td>
<td>193</td>
<td>0.17</td>
<td>4.87</td>
<td>9.7</td>
<td>16.2</td>
<td>14.0</td>
</tr>
<tr>
<td>MT-800N</td>
<td>239</td>
<td>0.23</td>
<td>2.37</td>
<td>14.7 (A)d, 25.0 (R)e</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MT-600N-450A</td>
<td>126</td>
<td>0.28</td>
<td>3.27</td>
<td>11.5</td>
<td>19.0</td>
<td>16.4</td>
</tr>
<tr>
<td>MT-700N-450A</td>
<td>137</td>
<td>0.32</td>
<td>4.78</td>
<td>12.4</td>
<td>18.4</td>
<td>15.9</td>
</tr>
<tr>
<td>MT-800N-450A</td>
<td>108</td>
<td>0.37</td>
<td>4.81</td>
<td>15.9 (A), 29.6 (R)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>T-700N-450A</td>
<td>33</td>
<td>0.01</td>
<td>5.62</td>
<td>20.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

a The sizes were calculated from the 101 reflection for anatase and 110 reflection for rutile in the WAXRD patterns; b d values were calculated using the Bragg equation; c the unit-cell parameters were calculated using the formula $a = \sqrt{3} d_{100}/2$; d A refers to anatase phase; e R refers to rutile phase.