Supplementary Information: Alkoxysilyl Functionalized Polynorbornenes with Enhanced Selectivity for Heavy Hydrocarbon Separations

Synthesis of the trimethylsilyl norbornene monomer

Under nitrogen, a 100-mL Schlenk flask was charged with cyclopentadiene (4.75 ml, 35.2 mmol) and vinyltrimethyl silane (31 mL, 211.6 mmol), heated to 205 ℃, and stirred for 3 hours. After 3 hours, the reaction mixture was cooled to room temperature before it was distilled and isolated as a clear liquid at 74% yield.

![Diels-Alder reaction](image)

Figure S1. Cracking of dicyclopentadiene and subsequent Diels-Alder reaction with vinyl trimethylsilane

Viscosity testing of low molecular weight addition-type oligomers produced from nickel catalysis

Inherent viscosity results of addition-type polymers prepared from nickel naphthenate (Nph) catalyst conditions. Viscosity testing performed using 1.0 g/dL solution in toluene at 35 ℃.

![Viscosity vs Concentration](image)

Figure S2. Nickel catalysts gave low inherent viscosities in toluene for several monomer and catalyst concentrations
Gel permeation chromatography (GPC) of ROMP-SiMe₃ and GPC of APN-SiMe₃ synthesized from nickel (Ni) catalyst and palladium (Pd) catalyst

Table S1. GPC confirmed that nickel naphthenate produced molecular weight species of insufficient molecular weight for film formation

<table>
<thead>
<tr>
<th>30 °C</th>
<th>APN-SiMe₃ [Ni(nph)₂ catalyst]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mₙ</td>
</tr>
<tr>
<td></td>
<td>Mₚ</td>
</tr>
<tr>
<td></td>
<td>M₂</td>
</tr>
<tr>
<td></td>
<td>Mₚ</td>
</tr>
<tr>
<td></td>
<td>Mₚ/Mₙ</td>
</tr>
<tr>
<td>Intrinsic Viscosity</td>
<td>0.1589</td>
</tr>
<tr>
<td>Sample Recovery (%)</td>
<td>99.26</td>
</tr>
<tr>
<td>dn/dc</td>
<td>2.738</td>
</tr>
</tbody>
</table>

Table S2. GPC results for high molecular polymers used for film casting

<table>
<thead>
<tr>
<th>30 °C</th>
<th>ROMP-SiMe₃</th>
<th>APN-SiMe₃ (Pd catalyst)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mₙ</td>
<td>60194</td>
</tr>
<tr>
<td></td>
<td>Mₚ</td>
<td>102180</td>
</tr>
<tr>
<td></td>
<td>M₂</td>
<td>236270</td>
</tr>
<tr>
<td></td>
<td>Mₚ</td>
<td>80227</td>
</tr>
<tr>
<td></td>
<td>Mₚ/Mₙ</td>
<td>1.698</td>
</tr>
<tr>
<td>Intrinsic Viscosity</td>
<td>0.5506</td>
<td>0.3387</td>
</tr>
<tr>
<td>Sample Recovery (%)</td>
<td>99.673</td>
<td>106.35</td>
</tr>
<tr>
<td>dn/dc</td>
<td>0.0373</td>
<td>0.0405</td>
</tr>
</tbody>
</table>
Thermogravimetric analysis showed high thermal stability of the synthesized polymers.

Figure S3. Thermal stability comparison of the ROMP polymers.
Figure S4. Thermal stability comparison of the addition-type polymers
Infrared spectroscopy of the synthesized polymers

Figure S5. ATR-FTIR shows varying ethoxysilyl and methylsilyl content in the ROMP polymers
Figure S6. ATR-FTIR shows varying ethoxysilyl and methylsilyl content in the addition-type polymers.
Dynamic mechanical analysis probed glass transition temperatures of synthesized polymers

Figure S7. Glass transition temperatures of ROMP polymers from Tan (delta) peaks
Figure S8. Glass transition temperatures of addition-type polymers from Tan (delta) peaks
1H-NMR and 13C-NMR spectroscopy of monomers and 1H-NMR of polymers with appropriate integrations and peak designations

Figure S9. 1H-NMR with appropriate peak positions and integrations for trimethylsilyl norbornene

NMR spectra are in agreement with the formation of trimethylsilyl norbornene.

1H NMR (CDCl$_3$): δ 6.16 (dd, 1H, minor), 5.95 (dd, 1H, minor), 5.93 (dd, 1H, major), 5.92 (dd, 1H, major), 2.93 (br s, 1H, major), 2.91 (br s, 1H, minor), 2.87 (br s, 1H, major), 2.73 (br s, 1H, minor), 1.85 (ddd, 1H, major), 1.52 (ddd, 1H, major), 1.38 (ddd, 1H, major), 1.16 (m, 1H, minor), 1.15 (m, 1H, major), 1.13 (m, 1H, minor), 1.12 (m, 1H, major), 1.05 (m, 1H, minor), 1.03 (m, 1H, major), 0.92 (ddd, 1H, major), 0.31 (ddd, 1H, minor), 0.00 (s, 3H, minor), -0.10 (s, 3H, major)
Figure S10. 13C-NMR with appropriate peak positions for trimethylsilyl norbornene
NMR spectra for dimethylethoxysilyl norbornene:

1H NMR (CDCl$_3$): δ 6.15 (dd, 1H, minor), 5.98 (dd, 1H, major), 5.94 (dd, 1H, major), 5.92 (dd, 1H, minor), 3.68 (q, 2H, minor), 3.65 (q, 2H, major), 2.97 (br s, 1H, major), 2.92 (br s, 1H, minor), 2.88 (br s, 1H, major), 2.81 (br s, 1H, minor), 1.88 (ddd, 1H, major), 1.62 (ddd, 1H, minor), 1.38 (ddd, 1H, major), 1.19 (t, 3H, minor), 1.18 (t, 3H, major), 1.17 (m, 1H, minor), 1.16 (m, 1H, major), 1.13 (m, 1H, major), 1.12 (m, 1H, major), 1.05 (m, 1H, minor), 1.03 (m, 1H, minor), 1.00 (ddd, 1H, major), 0.41 (ddd, 1H, minor), 0.12 (s, 3H, minor), 0.11 (s, 3H, minor), 0.04 (s, 3H, major), -0.04 (s, 3H, major)
Figure S12. 13C-NMR with appropriate peak positions for dimethylethoxysilyl norbornene
Figure S13. 1H-NMR with appropriate peak positions and integrations for methyldiethoxysilyl norbornene

NMR spectra for methyldiethoxysilyl norbornene:

1H NMR (CDCl$_3$): δ 6.13 (dd, 1H, major), 5.98 (m, 2H, minor), 5.91 (dd, 1H, major), 3.78 (q, 2H, major), 3.78 (q, 2H, major), 3.76 (q, 2H, minor), 3.72 (q, 2H, minor), 3.00 (m, 1H, minor), 2.92 (br s, 1H, major), 2.88 (m, 1H, minor), 2.86 (br s, 1H, major), 1.88 (ddd, 1H, minor), 1.70 (ddd, 1H, major), 1.38 (m, 1H, minor), 1.36 (m, 1H, major), 1.22 (t, 3H, major), 1.21 (t, 3H, major), 1.20 (t, 3H, minor), 1.18 (t, 3H, minor), 1.17 (m, 1H, major), 1.15 (m, 1H, minor), 1.11 (m, 1H, minor), 1.09 (m, 1H, major), 1.05 (ddd, 1H, minor), 0.45 (ddd, 1H, major), 0.13 (s, 3H, major), -0.04 (s, 3H, minor)
Figure S14. 13C-NMR with appropriate peak positions for methyldiethoxysilyl norbornene
Figure S15. 1H-NMR with appropriate peak positions and integrations for triethoxysilyl norbornene

NMR spectra for triethoxysilyl norbornene:

1H NMR (CDCl$_3$): δ 6.12 (dd, 1H, major), 6.01 (m, 2H, minor), 5.91 (dd, 1H, major), 3.83 (q, 6H, major), 3.77 (q, 6H, minor), 3.02 (m, 1H, minor), 2.92 (br s, 1H, major), 2.91 (br s, 1H, major), 2.87 (br s, 1H, minor), 1.86 (ddd, 1H, minor), 1.77 (ddd, 1H, major), 1.37 (m, 1H, minor), 1.35 (m, 1H, major), 1.35 (br s, 1H, minor), 1.33 (br s, 1H, major), 1.22 (t, 9H, major), 1.19 (t, 9H, minor), 1.17 (m, 1H, major), 1.15 (m, 1H, minor), 1.08 (m, 1H, minor), 0.45 (ddd, 1H, major)
Figure S16. 13C-NMR with appropriate peak positions for triethoxysilyl norbornene
Figure S17. 1H-NMR with appropriate peak positions and integrations for ROMP-SiMe$_3$.

NMR spectra are in agreement with the formation of ROMP-SiMe$_3$.

1H NMR (CDCl$_3$): δ 5.25 (several broad peaks, 2H, alkenyl), 3.32-0.63 (several broad peaks, aliphatic, 7H), 0.00 and -0.04 (singlets, -Si(CH$_3$)$_3$, 9H)
Figure S18. 1H-NMR with appropriate peak positions and integrations for ROMP-SiMe$_2$OEt

NMR spectra are in agreement with the formation of ROMP-SiMe$_2$OEt.

1H NMR (CDCl$_3$): δ 5.26 (several broad peaks, 2H, alkenyl), 3.36 (br s, Si(OCH$_2$CH$_3$), 2H) 3.32-1.42 (several broad peaks, aliphatic, 5H + H$_2$O), 1.30 (br s, aliphatic, 1H), 1.17 (s, Si(OCH$_2$CH$_3$), 3H), 0.16 (br shoulder, aliphatic, 1H), 0.10 and 0.06 (singlets, -Si(CH$_3$)$_3$, 6H)
Figure S19. 1H-NMR with appropriate peak positions and integrations for ROMP-SiMe(OEt)$_2$.

NMR spectra are in agreement with the formation of ROMP-SiMe(OEt)$_2$.

1H NMR (CDCl$_3$): δ 5.28 (several broad peaks, 2H, alkenyl), 3.73 (br s, Si(OCH$_2$CH$_3$), 4H) 3.27-1.27 (several broad peaks, aliphatic, 6H + H$_2$O), 1.19 (s, Si(OCH$_2$CH$_3$), 6H), 0.16 (br shoulder, aliphatic, 1H), 0.13/0.10 and 0.06 (singlets, -Si(CH$_3$)$_3$, 3H)
NMR spectra are in agreement with the formation of ROMP-Si(OEt)$_3$.

1H NMR (CDCl$_3$): δ 5.34 (several broad peaks, 2H, alkenyl), 3.80 (br s, Si(OCH$_2$CH$_3$), 6H) 3.27-1.30 (several broad peaks, aliphatic, 6H + H$_2$O), 1.20 (s, Si(OCH$_2$CH$_3$), 9H), 0.16 (br shoulder, aliphatic, 1H)
NMR spectra are in agreement with the formation of APN-SiMe₃.

1H NMR (CDCl₃): δ 3.24-0.25 (several broad peaks, aliphatic, 9H), 0.04 and -0.04 (singlets, -Si(CH₃)₃, 9H)
NMR spectra are in agreement with the formation of APN-SiMe₂OEt.

\(^1\text{H NMR (CDCl}_3\): \(\delta\) 3.64 (br s, Si(OCH₂CH₃), 2H), 1.14 (br s, Si(OCH₂CH₃), 3H), 3.28-0.35 (several broad peaks, aliphatic, 9H), 0.06 (br s, -Si(CH₃)₃, 6H)
NMR spectra are in agreement with the formation of APN-SiMe(OEt)$_2$.

1H NMR (CDCl$_3$): δ 3.74 (br s, Si(OCH$_2$CH$_3$), 4H), 1.17 (br s, Si(OCH$_2$CH$_3$), 6H), 3.46-0.35 (several broad peaks, aliphatic, 9H), 0.07 (br s, -Si(CH$_3$)$_3$, 3H)
Figure S24. 1H-NMR with appropriate peak positions and integrations for APN-Si(OEt)$_3$.

NMR spectra are in agreement with the formation of APN-Si(OEt)$_3$.

1H NMR (CDCl$_3$): δ 3.79 (br s, Si(OCH$_2$CH$_3$), 6H), 1.19 (br s, Si(OCH$_2$CH$_3$), 9H), 3.42-0.16 (several broad peaks, aliphatic, 9H)