A high sensitive non-enzymatic hydrogen peroxide and hydrazine electrochemical sensor based on 3D micro-snowflakes architectures of α-Fe$_2$O$_3$

S.Majumdera,b,*, B.Sahaa, S.Deyb, R.Mondalb, S. Kumarband S. Banerjeea

aSaha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata – 700064, India

bDepartment of Physics, Jadavpur University, Kolkata – 700032, India

*Corresponding Authors Email-kumars@phys.jdvu.ac.in, sangam.banerjee@saha.ac.in

Fig. S1 EDS spectra of the micro-snowflake structured α-Fe$_2$O$_3$.
Fig. S2 FTIR spectra of the micro-snowflake structured α-Fe₂O₃.

Fig. S3 Mossbauer spectra of the micro-snowflake structured α-Fe₂O₃.
Fig. S4 Cyclic voltmetry curves of the sample at different scan rate, Linear dependence of current density Vs Scan rate (Inset).

Fig. S5 Cyclic voltmetry curves of the sample at different scan rate variation in the presence of 10mM of hydrazine, and Linear dependence of current density vs Scan rate.