Both symmetric and asymmetric ω–2θ scans are taken with a Bruker D8 triple-axis diffractometer using Cu K$_{\alpha1}$ radiation ($\lambda = 0.15406$ nm).

Fig. 7 shows the XRD ω-2θ scans of samples A and B. The GaN (002), (004) and (102), (204) diffraction peak positions were used to calculate the lattice constants c and a by using the following equations:\(^1\)

$$d_{hkl} = \frac{\lambda}{2\sin(\theta_{hkl} + \Delta\theta)} = \frac{2\lambda}{2\sin(\theta_{2h2k2l} + \Delta\theta)}$$ \hspace{1cm} (1)

$$d_{hkl} = \frac{1}{\sqrt{\left(\frac{4}{a}k^2 + \frac{4}{c}h^2 + \frac{4}{b}h^2k^2\right)}}$$ \hspace{1cm} (2)

where $(h k l)$ are the indices of the diffraction plane, θ_{hkl} is the measured angular position of the $(h k l)$ reflection, λ is the X-ray wavelength (0.154 nm for Cu K$_{\alpha1}$ radiation), and $\Delta\theta$ is the zero error of the instrument.

The in-plane strain was obtained by using the formula:

$$\varepsilon_{//} = \frac{a - a_0}{a_0}$$

Hence, the residual stress in the films can be roughly estimated by using the formula:
\[\sigma = M \times \varepsilon_{//} \]

where \(\sigma \) is the in-plane stress, \(M (M_{\text{GaN}} = 202 \text{ GPa}) \) is the biaxial elastic modulus, and \(\varepsilon \) is the in-plane strain. The lattice constants of strain-free GaN are \(a_0 = 0.31892 \text{ nm} \) and \(c_0 = 0.51850 \text{ nm} \).\(^1\)

The calculated lattice constants, strains and stresses are listed in Table I:

<table>
<thead>
<tr>
<th></th>
<th>Sample A</th>
<th>Sample B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) (nm)</td>
<td>0.51898</td>
<td>0.51907</td>
</tr>
<tr>
<td>(a) (nm)</td>
<td>0.31836</td>
<td>0.31839</td>
</tr>
<tr>
<td>(\varepsilon_{//})</td>
<td>-0.18%</td>
<td>-0.17%</td>
</tr>
<tr>
<td>(\sigma) (GPa)</td>
<td>-0.35</td>
<td>-0.34</td>
</tr>
</tbody>
</table>

According to the calculated results, it can be concluded that the in-plane stress in both samples are compressive stress in nature. Moreover, the calculated in-plane stress in sample A is almost same as that of sample B. There seems a discrepancy between the stress values from XRD results and Raman measurements. This discrepancy may come from the domain size characteristic of each technique.\(^3\) According to ref.3, the X-ray beam is scattered by the crystalline and the effect of lattice distortion is averaged over a large sample area through the whole depth for XRD characterization. In contrast, micro-Raman spectroscopy is a local technique that probes only the spot-size area with a shallow depth. Another source of error in the stress evaluation may come from the variation of the elastic modulus with film quality, which may be a significant source of error resulting in the discrepancy between the values obtained by these two techniques. However, it is a topic of ongoing investigation.

Reference