Supplementary Materials

Degradation of 4-Chlorophenol in Fenton-like system using Au-Fe$_3$O$_4$ magnetic nanocomposites as the heterogeneous catalyst at near neutral condition

Jie Liua, Zhiwei Zhaoa,*, Xiaoxia Dinga, Zhendong Fanga,*, Fuyi Cuib

a Department of National Defense Architecture Planning and Environmental Engineering, Logistical Engineering University, Chongqing 401311, China

b State Key Laboratory of Urban Water Resource and Environment and School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China

Table S1. Physical character of the prepared three samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Saturation magnetization (emu g$^{-1}$)</th>
<th>Coercivity (Oe)</th>
<th>BET surface (m2/g)</th>
<th>Average diameter of pore (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>82.25</td>
<td>90.02</td>
<td>43.79</td>
<td>0.25</td>
</tr>
<tr>
<td>Sample 2</td>
<td>82.92</td>
<td>72.46</td>
<td>42.69</td>
<td>0.22</td>
</tr>
<tr>
<td>Sample 3</td>
<td>83.38</td>
<td>86.53</td>
<td>44.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016
Fig. S1 The synthesized catalysts dispersed in water for 5 min (A) and then with magnet by side for 2 min (B).

Fig. S2 Stability of the Au-Fe$_3$O$_4$ nanocomposites in the repeated batch 4-CP degradation experiment. Reaction conditions: initial pH 5.0, catalyst dose 0.1 g/L, H$_2$O$_2$ dose 0.5 g/L, initial concentration of 4-CP 25 mg/L, temperature 303 K, reaction time 4 h.
Fig. S3 XRD spectrum of catalyst.

Fig. S4 (a) The Au 4f and (b) Fe 2p XPS spectrum of catalyst.
Fig. S5 Fe ion leaching in the repeated batch 4-CP degradation experiment. Reaction conditions: initial pH 5.0, catalyst dose 0.1 g/L, H$_2$O$_2$ dose 0.5 g/L, initial concentration of 4-CP 25 mg/L, temperature 303 K, reaction time 4 h.

Fig. S6 TOC removal in the 4-CP degradation experiment. Reaction conditions: initial pH 5.0, catalyst dose 0.1 g/L, H$_2$O$_2$ dose 0.5 g/L, initial concentration of 4-CP 25 mg/L,
temperature 303 K, reaction time 4 h.