Supplementary information

Comparative Structure Activity Relationship for Heterogeneous Phosphatase-like Catalytic Activities of One-Dimensional Cu(II) Coordination Polymers

Navid Hussain, a Pooja Joshi, b Shah Raj Ali b and Vimal K. Bhardwaj*, a

aDepartment of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.

bDepartment of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, 263002, India

Table of Contents

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Figure No.</th>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Figure S1</td>
<td>Absorption spectra for the transesterification of HPNP for complex 2 and 3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Figure S2</td>
<td>31P NMR of HPNP on addition of complex 1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Figure S3</td>
<td>Time dependent 31P NMR spectra for HPNP hydrolysis by complex 1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Figure S4</td>
<td>Dependence of rate of reaction on substrate concentration for complex 3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Figure S5</td>
<td>Powder X-ray diffraction pattern of 1-3 before and after catalytic experiments</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Figure S6</td>
<td>Reusability of complex 3 for repeated HPNP phosphate ester bond cleavage experiments</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>Table S1</td>
<td>Comparative activities from reported complexes</td>
<td>5</td>
</tr>
</tbody>
</table>
Fig. S1 Absorption spectra for the transesterification of HPNP (100 μM) in the absence and presence of (a) complex 2 and (b) complex 3 (50 μM) in 10% MeOH recorded at an interval of 5 minutes at 30°C.
Fig. S2 31P NMR of (a) substrate (HPNP), (b) synthesised cyclic phosphate (glycero-1,2-cyclic phosphate) and (c) substrate- catalyst reaction mixture in D$_2$O/DMSO-d_6 mixture (70:30).

Fig. S3. Time dependent 31P NMR spectra for HPNP hydrolysis by complex 1, in D$_2$O/DMSO-d_6 mixture (70:30), [HPNP]= 0.1 mM and [Complex] = 0.25 mM.
Fig. S4 Dependence of rate of reaction on substrate concentration (50-500 μM) for complex 3 (50 μM) at 30 °C in 10% MeOH.

Fig. S5 PXD patterns of (a) 1 and (b) 3 before catalytic experiments (black coloured) and after third cycle of catalytic experiments (blue coloured)
Fig. S6 Reusability of complex 3 for repeated HPNP phosphate ester bond cleavage experiments.

Table S1 Phosphotase like activities from reported complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>Substrate</th>
<th>Conditions</th>
<th>K_{cat} (s$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ni$_2$L(H$_2$O)$_4$]$_4$H$_2$O·2ClO$_4$</td>
<td>4-NPP</td>
<td>acetonitrile–water (2.5% (v/v), 25° C)</td>
<td>3.5×10^4</td>
<td>S1</td>
</tr>
<tr>
<td>[Zn(bpy)Cl$_2$]</td>
<td>BNPP</td>
<td>water, 25 °C</td>
<td>5.7×10^{-7}</td>
<td>S2</td>
</tr>
<tr>
<td>[Zn$_2$(L$_3$)-(μ-O$_2$CMe)$_2$(MeCN)$_2$][PF$_6$]</td>
<td>HPNP</td>
<td>MeOH-H$_2$O (33%, v/v), 30° C</td>
<td>3.44 × 10$^{-4}$</td>
<td>S3</td>
</tr>
<tr>
<td>[Zn$_2$(L)$_2$]</td>
<td>3’,5-UpU</td>
<td>water, 25 °C</td>
<td>2.8×10^{-5}</td>
<td>S4</td>
</tr>
<tr>
<td>[Cu$_2$(H$_2$patty)\cdot (μ-OH)(H$_2$O)$_2$]</td>
<td>BDNPP</td>
<td>H$_2$O : MeCN : MeOH = 50 : 45 : 5, 25 °C</td>
<td>3.95×10^{-3}</td>
<td>S5</td>
</tr>
<tr>
<td>Zn$_2$(bpmp)(μ-OH)(ClO$_4$)$_2$</td>
<td>HPNP</td>
<td>DMSO-H$_2$O (30%, v/v), 25° C</td>
<td>6.4×10^{-4}</td>
<td>S6</td>
</tr>
<tr>
<td>{[Cu$_3$(L1)(NO$_3$)$_2$(DMF)(H$_2$O)]·3(DMF)}$_n$ (1)</td>
<td>HPNP</td>
<td>MeOH-H$_2$O (10%, v/v), 30° C</td>
<td>9.6×10^{-3}</td>
<td>Present work</td>
</tr>
</tbody>
</table>
References