Supporting Information

Highly stable supercapacitive performance of the one-dimensional (1D) brookite TiO$_2$ nanoneedles

Rupesh S. Devana,b,c,*, Yuan-Ron Mac*, Ranjit A. Patilc, and Schmidt-Mande Lukasd

aDepartment of Physics, Savitribai Phule Pune (Formerly, University of Pune), Pune 411007, India

bCentre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India

cDepartment of Physics, National Dong Hwa University, Hualien 97401, Taiwan, R.O.C.

dDepartment of Physics, University of Konstanz, 78457 Constance, Germany.

*Corresponding authors:

Dr. Rupesh S. Devan, Associate Professor, Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001, India. E-mail: devan_rs@yahoo.co.in

Prof. Yuan-Ron Ma, Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan. E-mail: ronma@mail.ndhu.edu.tw

Galvanostatic charging-discharging:

The galvanostatic charging-discharging (Fig. S1,) of 1D β-TiO$_2$ nanoneedles was studied at various current densities of 166.7, 250, 333.3 and 416.7 µA/g. Obviously, the charging curves were relatively symmetric to their discharge counterpart implying that a highly reversible ion transportation is efficiently taking place along the textural boundaries of 1D β-TiO$_2$ nanoneedles.

The specific capacitance from the galvanostatic charging-discharging was calculated using equation –

$$C_s = \frac{I}{m \cdot (dV/dt)}$$

--- (S1)
where, C_s is specific capacitance (F/g), I is the applied current (A), m is the mass of the active material (g), and dV/dt is the slope of the discharge curve (V/s). The C_s derived from the charge-discharge test (Fig. S1(b)) maintaining good linearity and gradually decreasing with increase in the current density from 166.7 to 416.7 µA/g, since the ion accessibility is limited to the surface of the 1D β-TiO$_2$ nanoneedles on the relevant timescale. The C_s value of 192.2 mF/g gained at a current density of 166.7 µA/g was decreased up to 27.6 mF/g at 417.7 µA/g. To our knowledge, these C_s values of 1D β-TiO$_2$ nanoneedles are larger than those achieved by brookite TiO$_2$ thin films and nanostructures. These values are comparable those obtained from anatase, [1] rutile [2] and hexagonal [3] TiO$_2$ structures. Moreover, 1D β-TiO$_2$ nanoneedles showed a more rapid ion diffusion mechanism in comparison to TiO$_2$ nanoparticles and its multilayer film with graphene, [4] TiO$_2$@C core-shell nanowires, [5] and anatase to rutile transformed TiO$_2$ nanotubes. [6]

The energy density (E), power density (P), and coulombic efficiency (η) of the supercapacitor devices was calculated from the equations,

$$E = \frac{1}{2} \times C_s \times (\Delta V) \times \frac{1000}{3600}$$ \hspace{1cm} \text{(S2)}$$

$$P = \frac{1}{2} \times \frac{C_s \times (\Delta V) \times 1000}{\Delta t_d} \times \frac{E}{3600}$$ \hspace{1cm} \text{(S3)}$$

$$\eta(\%) = \frac{\Delta t_d \times 100}{\Delta t_c}$$ \hspace{1cm} \text{(S4)}$$

where, E is the energy density (Wh/Kg), C_s is specific capacitance obtained from Eq. (3), ΔV is the discharge voltage range (V) on the potential window, P is the power density (W/Kg), η is the coulombic efficiency, and Δt_d and Δt_c are discharge and charging time, respectively. The calculated energy density and power density of the 1D β-TiO$_2$ nanoneedles are 3.04 Wh/Kg, and 206.09 W/Kg, respectively, at a scan rate of 15 mV/s. To demonstrate the overall performance of 1D β-TiO$_2$ nanoneedles, a Ragone plot is shown in Fig. S2. A Ragone plot manifests a energy density and power density of 3.04Wh/Kg and 1683W/Kg, respectively, which is better than the previous reported for anatase TiO$_2$ nanotubes, [1] vertically aligned rutile TiO$_2$ nanorods, [2] microwave assisted graphene-TiO$_2$ hybrid nanostructures, [7] and hybrid supercapacitor fabricated with the carbon nanotube (CNT) cathode and TiO$_2$ nanowire anode. [8] The coulombic efficiency of 98 % is obtained from 1D β-TiO$_2$ nanoneedles and is mainly attributed to the increased contributions of large surface area and textural boundaries. These results clearly demonstrate a new dimension of the 1D β-TiO$_2$ nanoneedles for the development of high stable supercapacitor of long cycle lifetime.
Fig. S1 Galvanostatic discharge curves of the 1D β-TiO$_2$ nanoneedles collected at various current densities within the limiting potential of 0 to 0.8 V. (b) The specific capacitance for various current densities calculated from discharging curves.

Fig. S2 Ragone plot derived from CV to determine the performance of the 1D β-TiO$_2$ nanoneedles.
Fig. S3 Figure shows selected cyclic voltammograms obtained at scan rate of 100 mV/s for number cycles from 1 to 10,000 cycles.

Fig. S4 First 50 glavanostatic charging-discharging cycles extracted out of 5,000 cycles obtained at current density of 250 µA/g. Inset shows first five cycles.

Table 1 – The 1D β-TiO$_2$ nanoneedles shows better stability than the pure and hybrid metal-oxide nanostructures listed in the table below.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Electrode Materials</th>
<th>Capacitance reduction (%)</th>
<th>Number of cycles</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>V$_2$O$_5$ nanowires</td>
<td>~ 50.0 %</td>
<td>5000</td>
<td>[9]</td>
</tr>
<tr>
<td>2.</td>
<td>NiO porous microtubes</td>
<td>~ 22.6 %</td>
<td>2000</td>
<td>[10]</td>
</tr>
<tr>
<td>4.</td>
<td>Co$_3$O$_4$ nanowires</td>
<td>~ 15.0 %</td>
<td>1000</td>
<td>[12]</td>
</tr>
<tr>
<td>5.</td>
<td>Co$_3$O$_4$ hollow nanotube</td>
<td>~ 9.0 %</td>
<td>1000</td>
<td>[13]</td>
</tr>
<tr>
<td>6.</td>
<td>α-MnO$_3$ nanobelts</td>
<td>~ 5.0 %</td>
<td>500</td>
<td>[14]</td>
</tr>
<tr>
<td>7.</td>
<td>NiO@MnO$_2$ microtube</td>
<td>~ 18.3 %</td>
<td>2000</td>
<td>[10]</td>
</tr>
<tr>
<td>8.</td>
<td>Graphene@V$_2$O$_5$ nanobelts</td>
<td>~ 12.0 %</td>
<td>5000</td>
<td>[15]</td>
</tr>
<tr>
<td>9.</td>
<td>MnO$_2$ nanowires/ZnO nanorods</td>
<td>~ 6.5 %</td>
<td>1000</td>
<td>[16]</td>
</tr>
<tr>
<td>10.</td>
<td>V$_2$O$_5$ doped α-Fe$_2$O$_3$ nanotubes</td>
<td>~ 24.5 %</td>
<td>200</td>
<td>[17]</td>
</tr>
</tbody>
</table>
11. Carbon coated V$_2$O$_5$ nanorods ~ 24.0 % 1000 [18]
12. V$_2$O$_5$ nanoporous network ~ 24.0 % 600 [19]
13. SnO$_2$ Nanosheets ~ 58.2 % 6000 [20]
14. Co$_3$O$_4$ nanosheets ~ 31.0 % 1000 [21]
15. Co$_3$O$_4$ ultrathin nanosheets ~ 21.5 % 2000 [22]
17. SnO$_2$@Co$_3$O$_4$ core-shell nanosheets ~ 41.7 % 6000 [20]
18. MnO$_2$ nanoparticles ~ 22.8 % 1000 [23]
19. Ni@NiO core-shell nanoparticulate tube ~ 19.0 % 1000 [11]
20. SnO$_2$@MnO$_2$ nanoparticles ~ 18.9 % 1000 [23]
21. Ppy/GO/ZnO nanocomposite on Ni-Fome ~ 97.0 % 1000 [24]
22. Ni(OH)$_2$/Graphene and RuO$_2$/Graphene ~ 8.0 % 5000 [15]
23. MnO$_2$ grafted V$_2$O$_5$ nanostructure ~ 11.0 % 500 [26]
24. NiO-CeO$_2$ nanoparticles composites ~ 15.0 % 1000 [27]

References:

