Graphene nanodots decorated ultrathin P doped ZnO nanosheets for highly efficient photocatalyst

Yuankun Zhu, Xiuming Bu, Ding Wang, Ping Wang, Aiyiing Chen, Qian Li, Junhe Yang and Xianying Wang

School of Materials Science and Engineering, University of Shanghai for Science & Technology, Shanghai, 200093, China.
State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road, Shanghai 200072, China
Materials Genome Institute, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Fig. S1 Thermogravimetric Analysis (Pyris 1, PerkinElmer) of ZnO:P/GNDs composites with different amounts of GNDs. Weight ratios of the five samples are about 0.4 wt.%, 1.0 wt.%, 1.6 wt.%, 2.1 wt.%, and 2.7 wt.%, respectively.
Fig. S2 (a) AFM height topography and (b) cross-sectional profiles of as-grown ZnO:P nanosheets. The mean thickness of ZnO:P nanosheets is about 20-30 nm.
Fig. S3 PL spectra of graphene nanodots. The emission peak is located at 526 nm.
Fig. S4 XPS spectra of ZnO:P nanosheets, (a) the Zn 2p spectrum and (b) the P 2s spectrum.
Table S1 Apparent rate constants k calculated according to the UV-VIS spectra for degrading RhB of ZnO:P/GNDs with different amounts of GNDs.

<table>
<thead>
<tr>
<th>GNDs ratio</th>
<th>0</th>
<th>0.4 wt.%</th>
<th>1.0 wt.%</th>
<th>1.6 wt.%</th>
<th>2.1 wt.%</th>
<th>2.7 wt.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>k (min$^{-1}$)</td>
<td>0.131</td>
<td>0.210</td>
<td>0.254</td>
<td>0.442</td>
<td>0.287</td>
<td>0.266</td>
</tr>
</tbody>
</table>