Electronic Supplementary

Nanoporous ZnO nanostructure synthesis by a facile method for superior sensitive ethanol sensor applications

Nguyen Thi Phuong Nhung²*, Pham Van Tong¹,³, Chu Manh Hung¹, Nguyen Van Duy¹, Nguyen Viet Chien¹, Nguyen Van Vinh², Nguyen Thai Tuyen², Nguyen Duc Hoa¹*

¹ International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No. 1, Dai Co Viet, Hai Ba Trung, Hanoi, Viet Nam.
²PetroVietnam University, 7th floor, PVMTC Building, Cach Mang Thang Tam Str., Long Toan Ward, Ba Ria-Vung Tau Province, Vietnam.
³Department of Physics, Faculty of Mechanical Engineering, National University of Civil Engineering (NUCE), No. 55, Giai Phong Str., Hanoi, Viet Nam.

Corresponding authors: ndhoa@itims.edu.vn (N D Hoa);
Figure S 1. A photo of precipitated product, and details about the calculation of the yield of material.

- Chemical reaction: $5\text{Zn(NO}_3\text{)}_2 + 2\text{Na}_2\text{CO}_3 + 6\text{H}_2\text{O} = \text{C}_2\text{H}_6\text{O}_{12}\text{Zn}_5 + 4\text{NaNO}_3 + 6\text{HNO}_3$
- Mol of zinc nitrate, $\text{Zn(NO}_3\text{)}_2$ used in this work (50 ml, 1M) $\rightarrow n_{\text{Zn}^{2+}} = 50 \text{ mmol}$.
- Mol of sodium carbonate, Na_2CO_3 used in this work (10 mL of 1 M) $\rightarrow n_{\text{Na}_2\text{CO}_3} = 10 \text{ mmol}$.
- If assumed that 100% zinc nitrate was transferred into Hydrozincite \rightarrow mol of hydrozincite: $n=50/5=10 \text{ mmol} \rightarrow$ Weight of Hydrozincite (M=548.96 g/mol) theoretically calculated based on zinc nitrate used: $m=10 \times 548.96 \text{ (mg)} = 5489.6 \text{ mg} = 5.489 \text{ g}$
- However, the amount of Na_2CO_3 used in this work is much less than the requirement amount for the reaction, thus the $\text{Zn(NO}_3\text{)}_2$ remains in the reaction. Therefore, we calculated the yield of Hydrozincite over the sodium carbonate. With assumption that 100% of Na_2CO_3 was reacted, thus weight of Hydrozincite theoretically calculated based on sodium carbonate used is: $m=5 \times 548.96 \text{ (mg)} = 2.74 \text{ g}$
- Weight of Hydrozincite obtained in our experiment: ~2.6 g
- Yield of over the is $=2.6/2.74 \approx 94\%$ of sodium carbonate used.
The average crystalline size calculated by Scherrer equation using the (101) peak is 16.1, 25.1, 31.0, and 35.9 nm, respectively.
Figure S3. SEM images of ZnO heat treated at different temperatures: (A) 400, (B) 500, (C) 600, and (D) 700°C.
Figure S4. (A) Nitrogen adsorption/desorption isotherm of the ZnO nanostructures calcinated at 400°C; and (B) pore size distribution.