Supplementary information

Metal-Enhanced Fluorescence-Based Multilayer Core-Shell Ag-nanocube@SiO$_2$@PMOs Nanocomposite Sensor for Cu$^{2+}$ Detection

Baowen Sun,a Chunsheng Wang,b Shuhua Han,*,a Yongfeng Hu,c Lijuan Zhangd

aKey Lab of Colloid and Interface Chemistry Ministry of Education, Shandong University, Jinan 250100, P. R. China

bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China

cCanadian Light Source 44 Innovation Boulevard Saskatoon, SK, S7N 2V3, Canada

dShanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

*To whom correspondence should be addressed: E-mail: shuhhan@sdu.edu.cn;
Tel +86-531-88365450; Fax +86-531-88564464
Fig. S1 1H NMR spectrum of Compound 2.

Fig. S2 1H NMR spectrum of Compound 3.
Fig. S3 (A) plot of absorbance intensities of Ag-nanocube@SiO$_2$@PMOs in C$_2$H$_5$OH with different concentrations of Cu$^{2+}$; (B) Benesi–Hildebrand plot of Ag-nanocube@SiO$_2$@PMOs with Cu$^{2+}$.

Fig. S4 Normalized X-ray absorption near-edge spectroscopy (XANES) for Cu$^{2+}$-chelated Ag-nanocube@SiO$_2$@PMOs at the copper K-edge (A), and corresponding first derivative XANES spectra (B). Fourier transformed extended X-ray absorption fine structure spectra (EAXFS) (C).