Supporting Information

Nonvolatile electrical switching behaviors and mechanism of functional polyimides bearing pyrrole unit: influence of different side groups

Zhuxin Zhou, Lunjun Qu, Tingting Yang, Jinglan Wen, Yi Zhang,* Zhenguozhenguoxi, Siwei Liu, Xudong Chen, and Jiarui Xu

PCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Centre for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China

This PDF file includes:

Figures S1-S9
Figure S1. 1H NMR spectra of the novel diamines (a) PyCH$_3$DA, (b) PyCF$_3$DA and (c) PyCPh$_3$DA.

Figure S2. 13C NMR spectra of the novel diamines (a) PyCH$_3$DA, (b) PyCF$_3$DA and (c) PyCPh$_3$DA.
Figure S3. Characterization of the synthesized polyimides: (a) FTIR spectra and (b) 1H NMR spectra.
Figure S4. WAXD patterns of the polyimide films.

Figure S5. Polyimides thermal properties: (a) DSC curves, (b) DMA curves, (c) TMA curves and (d) TGA curves.
Figure S6. UV-vis absorption spectra of diamines PyCH₃DA, PyCF₃DA and PyCPh₃DA in THF at a concentration of 1×10⁻⁵ mol/L.

Figure S7. Experimental (dots) and fitted (solid line, for Schottky emission model) I-V curves for the (a) ON state and (c) OFF state of the ITO/PyCF₃6FPI/Al devices, and (b) ON state and (d) OFF state of the ITO/PyCPh₃6FPI/Al devices.
Figure S8. The calculated frontier molecular orbitals of the basic units for PyCH$_3$6FPI (a) with and (b) without trifluoromethyl groups.
Figure S9. The calculated molecular orbitals of the basic units for Py6FPIs.